3,425 research outputs found

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Two decades of digital photogrammetry: Revisiting Chandler’s 1999 paper on “Effective application of automated digital photogrammetry for geomorphological research” – a synthesis

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record.Digital photogrammetry has experienced rapid development regarding the technology involved and its ease of use over the past two decades. We revisit the work of Jim Chandler who in 1999 published a technical communication seeking to familiarise novice users of photogrammetric methods with important theoretical concepts and practical considerations. In doing so, we assess considerations such as camera calibration and the need for photo-control and check points, as they apply to modern software and workflows, in particular for Structure-from-Motion (SfM) photogrammetry. We also highlight the implications of lightweight drones being the new platform of choice for many photogrammetry-based studies in the geosciences. Finally, we present three examples based on our own work, showing the opportunities that SfM photogrammetry offers at different scales and systems: at the micro-scale for monitoring geomorphological change, and at the meso-scale for hydrological modelling and the reconstruction of vegetation canopies. Our examples showcase developments and applications of photogrammetry which go beyond what was considered feasible 20 years ago and indicate future directions that applications may take. Nevertheless, we demonstrate that, in-line with Chandler’s recommendations, the pre-calibration of consumer-grade cameras, instead of relying entirely on self-calibration by software, can yield palpable benefits in micro-scale applications and that measurements of sufficient control points are still central to generating reproducible, high-accuracy products. With the unprecedented ease of use and wide areas of application, scientists applying photogrammetric methods would do well to remember basic considerations and seek methods for the validation of generated products.European Union’s Horizon 2020 researchMarie Skłodowska-CurieUK Department for Environment, Food and Rural Affair

    Evaluation of Skylab (EREP) data for forest and rangeland surveys

    Get PDF
    The author has identified the following significant results. Four widely separated sites (near Augusta, Georgia; Lead, South Dakota; Manitou, Colorado; and Redding, California) were selected as typical sites for forest inventory, forest stress, rangeland inventory, and atmospheric and solar measurements, respectively. Results indicated that Skylab S190B color photography is good for classification of Level 1 forest and nonforest land (90 to 95 percent correct) and could be used as a data base for sampling by small and medium scale photography using regression techniques. The accuracy of Level 2 forest and nonforest classes, however, varied from fair to poor. Results of plant community classification tests indicate that both visual and microdensitometric techniques can separate deciduous, conifirous, and grassland classes to the region level in the Ecoclass hierarchical classification system. There was no consistency in classifying tree categories at the series level by visual photointerpretation. The relationship between ground measurements and large scale photo measurements of foliar cover had a correlation coefficient of greater than 0.75. Some of the relationships, however, were site dependent

    The application of remote sensing techniques: Technical and methodological issues

    Get PDF
    Capabilities and limitations of modern imaging electromagnetic sensor systems are outlined, and the products of such systems are compared with those of the traditional aerial photographic system. Focus is given to the interface between the rapidly developing remote sensing technology and the information needs of operational agencies, and communication gaps are shown to retard early adoption of the technology by these agencies. An assessment is made of the current status of imaging remote sensors and their potential for the future. Public sources of remote sensor data and several cost comparisons are included

    Procedures for Correcting Digital Camera Imagery Acquired by the AggieAir Remote Sensing Platform

    Get PDF
    Developments in sensor technologies have made consumer-grade digital cameras one of the more recent tools in remote sensing applications. Consumer-grade digital cameras have been the imaging sensor of choice by researchers due to their small size, light weight, limited power requirements, and their potential to store hundreds of images (Hardin 2011). Several studies have focused on the use of digital cameras and their efficacy in remote sensing applications. For satellite and airborne multispectral imaging systems, there is a well established radiometric processing approach. However, radiometric processing lines for digital cameras are currently being researched. The goal of this report is to describe an absolute method of radiometric normalization that converts digital numbers output by the camera to reflectance values that can be used for remote sensing applications. This process is used at the AggieAir Flying Circus (AAFC), a service center at the Utah Water Research Laboratory at Utah State University. The AAFC is a research unit that specializes in the acquisition, processing, and interpretation of aerial imagery obtained with the AggieAirTM platform. AggieAir is an autonomous, unmanned aerial vehicle system that captures multi-temporal and multispectral high resolution imagery for the production of orthorectified mosaics. The procedure used by the AAFC is based on methods adapted from Miura and Huete (2009), Crowther (1992) and Neale and Crowther (1994) for imagery acquired with Canon PowerShot SX100 cameras. Absolute normalization requires ground measurements at the time the imagery is acquired. In this study, a barium sulfate reflectance panel with absolute reflectance is used. The procedure was demonstrated using imagery captured from a wetland near Pleasant Grove, Utah, that is managed by the Utah Department of Transportation

    On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Get PDF
    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challengespublishersversionPeer reviewe

    Quantifying marine macro litter abundance on a sandy beach using unmanned aerial systems and object-oriented machine learning methods

    Get PDF
    UIDB 00308/2020 REM/30324/2017 IT057-18-7252 UIDB/04292/2020Unmanned aerial systems (UASs) have recently been proven to be valuable remote sensing tools for detecting marine macro litter (MML), with the potential of supporting pollution monitoring programs on coasts. Very low altitude images, acquired with a low-cost RGB camera onboard a UAS on a sandy beach, were used to characterize the abundance of stranded macro litter. We developed an object-oriented classification strategy for automatically identifying the marine macro litter items on a UAS-based orthomosaic. A comparison is presented among three automated object-oriented machine learning (OOML) techniques, namely random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN). Overall, the detection was satisfactory for the three techniques, with mean F-scores of 65% for KNN, 68% for SVM, and 72% for RF. A comparison with manual detection showed that the RF technique was the most accurate OOML macro litter detector, as it returned the best overall detection quality (F-score) with the lowest number of false positives. Because the number of tuning parameters varied among the three automated machine learning techniques and considering that the three generated abundance maps correlated similarly with the abundance map produced manually, the simplest KNN classifier was preferred to the more complex RF. This work contributes to advances in remote sensing marine litter surveys on coasts, optimizing the automated detection on UAS-derived orthomosaics. MML abundance maps, produced by UAS surveys, assist coastal managers and authorities through environmental pollution monitoring programs. In addition, they contribute to search and evaluation of the mitigation measures and improve clean-up operations on coastal environments.publishersversionpublishe

    Airborne photogrammetry and LIDAR for DSM extraction and 3D change detection over an urban area : a comparative study

    Get PDF
    A digital surface model (DSM) extracted from stereoscopic aerial images, acquired in March 2000, is compared with a DSM derived from airborne light detection and ranging (lidar) data collected in July 2009. Three densely built-up study areas in the city centre of Ghent, Belgium, are selected, each covering approximately 0.4 km(2). The surface models, generated from the two different 3D acquisition methods, are compared qualitatively and quantitatively as to what extent they are suitable in modelling an urban environment, in particular for the 3D reconstruction of buildings. Then the data sets, which are acquired at two different epochs t(1) and t(2), are investigated as to what extent 3D (building) changes can be detected and modelled over the time interval. A difference model, generated by pixel-wise subtracting of both DSMs, indicates changes in elevation. Filters are proposed to differentiate 'real' building changes from false alarms provoked by model noise, outliers, vegetation, etc. A final 3D building change model maps all destructed and newly constructed buildings within the time interval t(2) - t(1). Based on the change model, the surface and volume of the building changes can be quantified
    • …
    corecore