216 research outputs found

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    WIRELESS NETWORK COCAST: COOPERATIVE COMMUNICATIONS WITH SPACE-TIME NETWORK CODING

    Get PDF
    Traditional cooperative communications can greatly improve communication performance. However, transmissions from multiple relay nodes are challenging in practice. Single transmissions using time-division multiple access cause large transmission delay, but simultaneous transmissions from two or more nodes using frequency-division multiple access (FDMA), code-division multiple access (CDMA), or distributed space-time codes are associated with the issues of imperfect frequency and timing synchronization due to the asynchronous nature of cooperation. In this dissertation, we propose a novel concept of wireless network cocast (WNC) and develop its associated space-time network codes (STNCs) to overcome the foretold issues. In WNC networks, each node is allocated a time slot for its transmission and thus the issues of imperfect synchronization are eliminated. To reduce the large transmission delay, each relay node forms a unique signal, a combination of the overheard information, and transmits it to the intended destination. The combining functions at relay nodes form a STNC that ensures full spatial diversity for the transmitted information as in traditional cooperative communications. Various traditional combining techniques are utilized to design the STNCs, including FDMA-like and CDMA-like techniques and transform-based techniques with the use of Hadamard and Vandermonde matrices. However, a major distinction is that the combination of information from different sources happens within a relay node instead of through the air as in traditional cooperative communications. We consider a general case of multiuser relay wireless networks, where user nodes transmit and receive their information to and from a common base node with the assistance from relay nodes. We then apply the STNCs to multiuser cooperative networks, in which the user nodes are also relay nodes helping each other in their transmission. Since the cooperative nodes are distributed around the network, the node locations can be an important aspect of designing a STNC. Therefore, we propose a location-aware WNC scheme to reduce the aggregate transmit power and achieve even power distribution among the user nodes in the network. WNC networks and its associated STNCs provide spatial diversity to dramatically reduce the required transmit power. However, due to the additional processing power in receiving and retransmitting each other's information, not all nodes and WNC networks result in energy efficiency. Therefore, we first examine the power consumption in WNC networks. We then offer a TDMA-based merge process based on coalitional formation games to orderly and efficiently form cooperative groups in WNC networks. The proposed merge process substantially reduces the network power consumption and improves the network lifetime

    Energy-Efficient Scheduling and Power Allocation in Downlink OFDMA Networks with Base Station Coordination

    Full text link
    This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular OFDMA system. Three definitions of the energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. %The performance of both an isolated and a non-isolated cluster of coordinated base stations is examined in the numerical experiments. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides a large saving in terms of dissipated energy. Also, the performance gap among the considered resource allocation strategies reduces as the out-of-cluster interference increases.Comment: to appear on IEEE Transactions on Wireless Communication

    Optimal Linear Precoding Strategies for Wideband Non-Cooperative Systems based on Game Theory-Part II: Algorithms

    Full text link
    In this two-part paper, we address the problem of finding the optimal precoding/multiplexing scheme for a set of non-cooperative links sharing the same physical resources, e.g., time and bandwidth. We consider two alternative optimization problems: P.1) the maximization of mutual information on each link, given constraints on the transmit power and spectral mask; and P.2) the maximization of the transmission rate on each link, using finite order constellations, under the same constraints as in P.1, plus a constraint on the maximum average error probability on each link. Aiming at finding decentralized strategies, we adopted as optimality criterion the achievement of a Nash equilibrium and thus we formulated both problems P.1 and P.2 as strategic noncooperative (matrix-valued) games. In Part I of this two-part paper, after deriving the optimal structure of the linear transceivers for both games, we provided a unified set of sufficient conditions that guarantee the uniqueness of the Nash equilibrium. In this Part II, we focus on the achievement of the equilibrium and propose alternative distributed iterative algorithms that solve both games. Specifically, the new proposed algorithms are the following: 1) the sequential and simultaneous iterative waterfilling based algorithms, incorporating spectral mask constraints; 2) the sequential and simultaneous gradient projection based algorithms, establishing an interesting link with variational inequality problems. Our main contribution is to provide sufficient conditions for the global convergence of all the proposed algorithms which, although derived under stronger constraints, incorporating for example spectral mask constraints, have a broader validity than the convergence conditions known in the current literature for the sequential iterative waterfilling algorithm.Comment: Paper submitted to IEEE Transactions on Signal Processing, February 22, 2006. Revised March 26, 2007. Accepted June 5, 2007. To appear on IEEE Transactions on Signal Processing, 200
    corecore