7 research outputs found

    Usage of Network Simulators in Machine-Learning-Assisted 5G/6G Networks

    Full text link
    Without any doubt, Machine Learning (ML) will be an important driver of future communications due to its foreseen performance when applied to complex problems. However, the application of ML to networking systems raises concerns among network operators and other stakeholders, especially regarding trustworthiness and reliability. In this paper, we devise the role of network simulators for bridging the gap between ML and communications systems. In particular, we present an architectural integration of simulators in ML-aware networks for training, testing, and validating ML models before being applied to the operative network. Moreover, we provide insights on the main challenges resulting from this integration, and then give hints discussing how they can be overcome. Finally, we illustrate the integration of network simulators into ML-assisted communications through a proof-of-concept testbed implementation of a residential Wi-Fi network

    INSPIRE: Distributed Bayesian Optimization for ImproviNg SPatIal REuse in Dense WLANs

    Full text link
    WLANs, which have overtaken wired networks to become the primary means of connecting devices to the Internet, are prone to performance issues due to the scarcity of space in the radio spectrum. As a response, IEEE 802.11ax and subsequent amendments aim at increasing the spatial reuse of a radio channel by allowing the dynamic update of two key parameters in wireless transmission: the transmission power (TX_POWER) and the sensitivity threshold (OBSS_PD). In this paper, we present INSPIRE, a distributed solution performing local Bayesian optimizations based on Gaussian processes to improve the spatial reuse in WLANs. INSPIRE makes no explicit assumptions about the topology of WLANs and favors altruistic behaviors of the access points, leading them to find adequate configurations of their TX_POWER and OBSS_PD parameters for the "greater good" of the WLANs. We demonstrate the superiority of INSPIRE over other state-of-the-art strategies using the ns-3 simulator and two examples inspired by real-life deployments of dense WLANs. Our results show that, in only a few seconds, INSPIRE is able to drastically increase the quality of service of operational WLANs by improving their fairness and throughput

    Reinforcement Learning Approaches to Improve Spatial Reuse in Wireless Local Area Networks

    Get PDF
    The ubiquitous deployment of IEEE 802.11 based Wireless Local Area Networks (WLANs) or WiFi networks has resulted in dense deployments of Access Points (APs) in an effort to provide wireless links with high data rates to users. This, however, causes APs and users/stations to experience a higher interference level. This is because of the limited spectrum in which WiFi networks operate, resulting in multiple APs operating on the same channel. This in turn affects the signal-tonoise-plus interference ratio (SINR) at APs and users, leading to low data rates that limit their quality of service (QoS). To improve QoS, interference management is critical. To this end, a key metric of interest is spatial reuse. A high spatial reuse means multiple transmissions are able to transmit concurrently, which leads to a high network capacity. One approach to optimize spatial reuse is by tuning the clear channel access (CCA) threshold employed by the carrier sense multiple access with collision avoidance (CSMA/CA) medium access control (MAC) protocol. Specifically, the CCA threshold of a node determines whether it is allowed to transmit after sensing the channel. A node may increase its CCA threshold, causing it to transmit even when there are other ongoing transmissions. Another parameter to be tuned is transmit power. This helps a transmitting node lower its interference to neighboring cells, and thus allows nodes in these neighboring cells to transmit as well. Apart from that, channel bonding can be applied to improve transmission rate. In particular, by combining/aggregating multiple channels together, the resulting channel has a proportionally higher data rate than the case without channel bonding. However, the issue of spatial reuse remains the same whereby the focus is to maximize the number of concurrent transmissions across multiple channels

    Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs

    No full text
    Spatial Reuse (SR) has recently gained attention to maximize the performance of IEEE 802.11 Wireless Local Area Networks (WLANs). Decentralized mechanisms are expected to be key in the development of SR solutions for next-generation WLANs, since many deployments are characterized by being uncoordinated by nature. However, the potential of decentralized mechanisms is limited by the significant lack of knowledge with respect to the overall wireless environment. To shed some light on this subject, we show the main considerations and possibilities of applying online learning to address the SR problem in uncoordinated WLANs. In particular, we provide a solution based on Multi-Armed Bandits (MABs) whereby independent WLANs dynamically adjust their frequency channel, transmit power and sensitivity threshold. To that purpose, we provide two different strategies, which refer to selfish and environment-aware learning. While the former stands for pure individual behavior, the second one considers the performance experienced by surrounding networks, thus taking into account the impact of individual actions on the environment. Through these two strategies we delve into practical issues of applying MABs in wireless networks, such as convergence guarantees or adversarial effects. Our simulation results illustrate the potential of the proposed solutions for enabling SR in future WLANs. We show that substantial improvements on network performance can be achieved regarding throughput and fairness.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502), by the Catalan Government SGR grant for research support (2017-SGR-1188), by the European Regional Development Fund under grant TEC2015-71303-R (MINECO/FEDER), and by a Gift from the Cisco University Research Program (CG#890107, Towards Deterministic Channel Access in High-Density WLANs) Fund, a corporate advised fund of Silicon Valley Community Foundation

    Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs

    No full text
    Spatial Reuse (SR) has recently gained attention to maximize the performance of IEEE 802.11 Wireless Local Area Networks (WLANs). Decentralized mechanisms are expected to be key in the development of SR solutions for next-generation WLANs, since many deployments are characterized by being uncoordinated by nature. However, the potential of decentralized mechanisms is limited by the significant lack of knowledge with respect to the overall wireless environment. To shed some light on this subject, we show the main considerations and possibilities of applying online learning to address the SR problem in uncoordinated WLANs. In particular, we provide a solution based on Multi-Armed Bandits (MABs) whereby independent WLANs dynamically adjust their frequency channel, transmit power and sensitivity threshold. To that purpose, we provide two different strategies, which refer to selfish and environment-aware learning. While the former stands for pure individual behavior, the second one considers the performance experienced by surrounding networks, thus taking into account the impact of individual actions on the environment. Through these two strategies we delve into practical issues of applying MABs in wireless networks, such as convergence guarantees or adversarial effects. Our simulation results illustrate the potential of the proposed solutions for enabling SR in future WLANs. We show that substantial improvements on network performance can be achieved regarding throughput and fairness

    Potential and pitfalls of multi-armed bandits for decentralized spatial reuse in WLANs

    No full text
    Spatial Reuse (SR) has recently gained attention to maximize the performance of IEEE 802.11 Wireless Local Area Networks (WLANs). Decentralized mechanisms are expected to be key in the development of SR solutions for next-generation WLANs, since many deployments are characterized by being uncoordinated by nature. However, the potential of decentralized mechanisms is limited by the significant lack of knowledge with respect to the overall wireless environment. To shed some light on this subject, we show the main considerations and possibilities of applying online learning to address the SR problem in uncoordinated WLANs. In particular, we provide a solution based on Multi-Armed Bandits (MABs) whereby independent WLANs dynamically adjust their frequency channel, transmit power and sensitivity threshold. To that purpose, we provide two different strategies, which refer to selfish and environment-aware learning. While the former stands for pure individual behavior, the second one considers the performance experienced by surrounding networks, thus taking into account the impact of individual actions on the environment. Through these two strategies we delve into practical issues of applying MABs in wireless networks, such as convergence guarantees or adversarial effects. Our simulation results illustrate the potential of the proposed solutions for enabling SR in future WLANs. We show that substantial improvements on network performance can be achieved regarding throughput and fairness.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502), by the Catalan Government SGR grant for research support (2017-SGR-1188), by the European Regional Development Fund under grant TEC2015-71303-R (MINECO/FEDER), and by a Gift from the Cisco University Research Program (CG#890107, Towards Deterministic Channel Access in High-Density WLANs) Fund, a corporate advised fund of Silicon Valley Community Foundation

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-
    corecore