226 research outputs found

    Performance Enhancement in Copper Twisted Pair Cable Communications

    Get PDF
    The thesis focuses on the area of copper twisted pair based wireline communications. As one of the most widely deployed communication media, the copper twisted pair cable plays an important role in the communication network cabling infrastructure. This thesis looks to exploit diversity to improve twisted pair channels for data communications in two common application areas, namely Ethernet over Twisted Paris and digital subscriber line over twisted pair based telephone network. The first part of the thesis addresses new approaches to next generation Ethernet over twisted pair cable. The coming challenge for Ethernet over twisted pair cable is to realise a higher data rate beyond the 25/40GBASE-T standard, in relatively short reach scenarios. The straight-forward approaches, such as improving cable quality and extending frequency bandwidth, are unlikely to provide significant improvement in terms of data rate. However, other system diversities, such as spectrum utilization are yet to be fully exploited, so as to meet the desired data rate performance. The current balanced transmission over the structured twisted pair cable and its parallel single-in-single-out channel model is revisited and formulated as a full-duplex multiple-in-multiple-out (MIMO) channel model. With a common ground (provided by the cable shield), the balanced transmission is converted into unbalanced transmission, by replacing the differential-mode excitation with single-ended excitation. In this way, MIMO adoption may offer spectrum utilization advantages due to the doubled number of the channels. The S-parameters of the proposed MIMO channel model is obtained through the full wave electromagnetic simulation of a short CAT7A cable. The channel models are constructed from the resulting S-parameters, also the corresponding theoretical capacity is evaluated by exploiting different diversity scenarios. With higher spectrum efficiency, the orthogonal-frequency-division-multiplexing (OFDM) modulation can significantly improve the theoretical capacity compared with single-carrier modulation, where the channel frequency selectivity is aided. The MIMO can further enhance the capacity by minimising the impact of the crosstalk. When the crosstalk is properly handled under the unbalanced transmission, this thesis shows that the theoretical capacity of the EoTP cable can reach nearly 200GBit/s. In order to further extend the bandwidth capability of twisted pair cables, Phantom Mode transmission is studied, aiming at creating more channels under balanced transmission operation. The second part of the thesis focuses on the research of advanced scheduling algorithms for VDSL2 QoS enhancement. For VDSL2 broadband access networks, multi-user optimisation techniques have been developed, so as to improve the basic data rate performance. Spectrum balancing improves the network performance by optimising users transmit power spectra as the resource allocation, to mitigate the impact from the crosstalk. Aiming at enhancing the performance for the upstream VDSL2 service, where the users QoS demand is not known by all other users, a set of autonomous spectrum balancing algorithms is proposed. These optimise users transmit power spectra locally with only direct channel state information. To prevent selfish behaviour, the concept of a virtual user is introduced to represent the impact on both crosstalk interference and queueing status of other users. Moreover, novel algorithms are developed to determine the parameters and the weight of the virtual user. Another type of resource allocation in the VDSL2 network is crosstalk cancellation by centralised signal coordination. The history of the data queue is considered as a time series, on which different smooth filter characteristics are investigated in order to investigate further performance improvement. The use of filter techniques accounts for both the instantaneous queue length and also the previous data to determine the most efficient dynamic resource allocation. With the help of this smoothed dynamic resource allocation, the network will benefit from both reduced signalling communication and improved delay performance.The proposed algorithms are verified by numerical experiments

    Physical Layer Techniques for High Frequency Wireline Broadband Systems

    Get PDF
    This thesis collects contributions to wireline and wireless communication systems with an emphasis on multiuser and multicarrier physical layer technology. To deliver increased capacity, modern wireline access systems such as G.fast extend the signal bandwidth up from tens to hundreds of MHz. This ambitious development revealed a number of unforeseen hurdles such as the impact of impedance changes in various forms. Impedance changes have a strong effect on the performance of multi-user crosstalk mitigation techniques such as vectoring. The first part of the thesis presents papers covering the identification of one of these problems, a model describing why it occurs and a method to mitigate its effects, improving line stability for G.fast systems.A second part of the thesis deals with the effects of temperature changes on wireline channels. When a vectored (MIMO) wireline system is initialized, channel estimates need to be obtained. This thesis presents contributions on the feasibility of re-using channel coefficients to speed up the vectoring startup procedures, even after the correct coefficients have changed, e.g., due to temperature changes. We also present extensive measurement results showing the effects of temperature changes on copper channels using a temperature chamber and British cables. The last part of the thesis presents three papers on the convergence of physical layer technologies, more specifically the deployment of OFDM-based radio systems using twisted pairs in different ways. In one proposed scenario, the idea of using the access copper lines to deploy small cells inside users' homes is explored. The feasibility of the concept, the design of radio-heads and a practical scheme for crosstalk mitigation are presented in three contributions

    Investigation of decoupling capacitor connection methods using PEEC and study of alien crosstalk from a BroadR-Reach® protocol based system

    Get PDF
    Power Distribution Network (PDN) for Printed Circuit Board (PCB) design requires proper power integrity analysis. In order to deliver a low-ripple DC voltage from a Voltage Regulator Module (VRM) to an Integrated Circuit (IC), a certain target input impedance should be achieved. Developing simple physics-based equivalent circuit models are essential for understanding how a system works and making crucial design decisions. In this work, the input impedance of a decoupling capacitor due to traces, pads and via discontinuities are investigated using the Physics-based Model Size Reduction (PMSR) method. Various decoupling capacitor connection methods are compared and design guidelines are provided for reducing the equivalent inductance to meet target impedance requirements. It is shown that a shared pad having 179 pH equivalent Labove loop inductance is a better design choice as compared to a doublet or shared via design with 218 pH and 406 pH Labove loop inductance respectively. The second part of this thesis relates to BroadR-Reach® technology, a point-to-point Ethernet Physical Layer (PHY) standard, which is used in automotive applications. This technology allows full-duplex communication between two devices over a single, Unshielded Twisted wire Pair (UTP) cable. Here, alien crosstalk in a 6 UTP bundle is investigated for meeting electromagnetic compatibility requirements. The performance of Alien Near-End and Far-End Crosstalk of two different UTPs with and without an inline Circular Plastic Connector (CPC) are compared to standard limits. An inline connector in the middle of a 15 m 6 UTP cable bundle, with a 25 cm untwisted region fails the PSANEXT standard limit by 4 dB at 100 MHz, while the same bundle without the connector passes the standard by a margin of 8 dB at 100 MHz --Abstract, page iii

    Mitigation of impulsive noise for SISO and MIMO G.fast system

    Get PDF
    To address the demand for high bandwidth data transmission over telephone transmission lines, International Telecommunication Union (ITU) has recently completed the fourth generation broadband (4GBB) copper access network technology, known as G.fast. Throughout this thesis, extensively investigates the wired broadband G.fast coding system and the novel impulsive noise reduction technique has been proposed to improve the performance of wired communications network in three different scenarios: single-line Discrete Multiple Tone (DMT)- G.fast system; a multiple input multiple-output (MIMO) DMTG.fast system, and MIMO G.fast system with different crosstalk cancellation methods. For each of these scenarios, however, Impulsive Noise (IN) is considered as the main limiting factor of performance system. In order to improve the performance of such systems, which use higher order QAM constellation such as G.fast system, this thesis examines the performance of DMT G.fast system over copper channel for six different higher signal constellations of M = 32, 128, 512, 2048, 8192 and 32768 in presence of IN modelled as the Middleton Class A (MCA) noise source. In contrast to existing work, this thesis presents and derives a novel equation of Optimal Threshold (OT) to improve the IN frequency domain mitigation methods applied to the G.fast standard over copper channel with higher QAM signal constellations. The second scenario, Multi-Line Copper Wire (MLCW) G.fast is adopted utilizing the proposed MLCW Chen model and is compared to a single line G-fast system by a comparative analysis in terms of Bit-Error-Rate(BER) performance of implementation of MLCW-DMT G.fast system. The third scenario, linear and non-linear crosstalk crosstalk interference cancellation methods are applied to MLCW G.fas and compared by a comparative analysis in terms of BER performance and the complexity of implementation.University of Technology for choosing me for their PhD scholarship and The Higher Committee For Education Development in Iraq(HCED

    Performance evaluation of currently available VLSI implementations satisfying U-interface requirements for an ISDN in South Africa.

    Get PDF
    A project report submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in partial fulfilment of the requirements for the degree of Master of Science in Engineering.This project report examines the performance of three VLSI U-interface implementations satisfying the requirements of Basic Access on an ISDN. The systems evaluated are the Intel 89120,Siemens PEB2090 and STC DSP144, operating on 2BIQ, MMS4J and SU32 line codes respectively. Before evaluating the three abovementioned systems, a review of the underlying principles of U-interface technology is presented. Included in the review are aspects of transmission line theory, line coding, echo-cancellation, decision feedback equalisation, and pulse density modulation. The functional specifications of the three systems are then presented followed by a practical evaluation of each system. As an aid to testing the transmission systems, an evaluation board has been designed and built. The latter provides the necessary functionality to correctly activate each system, as well as the appropriate interfacing requirements for the error-rate tester. The U-interface transmission systems are evaluated on a number of test-loops, comprising sections of cable varying in length and gauge. Additionally, impairments are injected into data-carrying cables, in order to test the performance of each system in the presence of noise. The results of each test are recorded and analysed. Finally, a recommendation is made in favour of the 2BIQ U-interface. It is shown to offer superior transmission performance, at the expense of a slightly higher transmit-power level.Andrew Chakane 201

    Measurement of Electromagnetic Noise Coupling and Signal Mode Conversion in Data Cabling

    Get PDF
    Nonuniformity in transmission lines is known to be one of the causes of electromagnetic compatibility (EMC) and signal integrity (SI) issues, especially at high frequencies. This may include unpredictability in the manufacturing process, design constraints, tolerances in the values of terminal components, pigtail effects, etc., that can generate, common mode currents – with resultant degradation of signal performance of transmission lines with respect to ground. All these phenomena are capable of converting the desired differential mode (DM) signal into the unwanted common mode (CM) signal and vice versa. This study looks at cable nonuniformity resulting from irregular cable twists in twisted pair cabling, using the Category 6 UTP as an example, and considers this phenomenon responsible for signal mode conversion. Although twisted pair cables are generally often regarded as balanced transmission lines, the study shows that signal mode conversion is capable of twisted pair cables, and that makes twisted pair cabling a non-ideal balanced transmission line. However, it is difficult to analyse nonuniformity using differential equations because of the changing per-unit-length (p.u.l) parameters throughout an entire line length. Because of this, experimental measurements based on mixed-mode s-parameters analysis are designed and used to show that twisted pair cables can convert a differential mode signal to common mode signal and thus cause radiated emissions to the circuit environment. A vital contribution of this study is in the measurement techniques used. Similarly, a common mode signal (represented by an externally generated noise signal) can couple onto the transmission line, and because of the physical structure of the line, the line could become susceptible to external noise. These phenomena are not associated with ideal balanced transmission lines. In either case, if the mode conversion is not minimized, it has the potential to affect the performance of the twisted pair transmission line in terms of bit error rate. Bit error rate, BER, is basically the average rate at which transmitted errors occur in a communication system due to noise and is defined as the number of bits in error divided by the total number of bits transmitted. Therefore, reducing mode conversion in a transmission line helps to reduce the bit error rate and indeed minimise crosstalk in the communication channel. The experiments were conducted using a 4-Port Vector Network Analyser. The significance of using the 4-port VNA is that it has a general application in cable parameter measurement in the absence of specialized/customized measuring instruments. Nonetheless, with some transmission line assumptions based on the Telegrapher’s equation and applying the concept of modal decomposition, the mechanisms of signal mode conversion could be recognised. Consequently, an approximate first step symbolic solution to identifying EM radiation and hence DM-to-CM conversion and vice versa in data cable were proposed.Tertiary Education Trust Fund (Nigeria

    Long-term effects of thermal variation on the performance of Balanced Twisted Pair Cabling

    Get PDF
    Remote powering over the Ethernet (including PoE, PoE+ and PoE++) is currently trending as a cost-effective option to power networked devices using balanced twisted pair cabling. As technology advances and Ethernet penetration grows, more devices are deployed, thereby increasing the cabling density to support these devices. Power delivery through Ethernet cables has numerous benefits, including cost and space saving. However, concurrent high-power transmission and installation conditions could induce local heating, and thus, thermal variation may occur in the cable bundles, and these can be exacerbated by the installation conditions, and sometimes by extreme weather conditions. Over a long time, all these could modify the cable properties, thus affecting the performance of the cabling system and thereby impacting the Ethernet signal integrity. Although Joule heating of the cable bundle is primarily assumed to be concomitants of current transmission through the cable, several fundamental questions around these processes are not yet fully answered. They include: Do cable heating and thermal variations influence the designed transmission parameters of the cable? If yes, how can the cause(s) and effects be accurately measured and reliably validated? In answering some of these questions, a series of experiments were developed and adopted to (1) assess cable bundle heating (2) assess the performance of Balanced Twisted Pair cables subject to repeated thermal variation, both within the specified operating range and beyond to account for the situations where high temperature and localised heating might stress the cables beyond the designed or expected levels (3) assess the performance of Ethernet cable dielectrics to understand some of the root causes of Ethernet cable performance degradation. The outcome of the research showed that high power (100 watts) deployment over bundled and insulated unshielded Ethernet cables triggered an extremely high-temperature increase (~ 1400C) that resulted in mechanical failure of the cables’ dielectrics and a short circuit between the copper conductors of the cables. Larger cable conductor size, screening of the twisted pair along with Fluoropolymers as the conductor insulation helped the shielded cables not to reach a point of failure when tested in the insulated environments and at high power levels even though there was a temperature rise on the cables. Moreover, repeated resistive and non- resistive heating have adverse effects on the electrical properties and transmission parameters of Balanced Twisted Pair cables, most notably in the first few cycles. The impact was more pronounced during the cooling phase than the heating phase. Also, the thermal impact was more accentuated in insulated operating condition than in ventilated operating condition. The electrical length of the cable measured by the tester decreased by 0.7 m 5 due to the effect of repeated non-resistive heating in an insulated environment and at a high temperature of ~1200C but decreased by 0.4 m with ~700C in a similar insulated environment. Phase drifts in Balanced Twisted Pair cables were observed to be dependent on the combined effects of mechanical dimension, dielectric constant and frequency. Thermal variation caused a phase change in the Return Loss (RL) signal from 630 to 900, from 900 to 1350 and from 1350 to 3150 respectively. The RL performance of Category 6 U/UTP CoMmunications Plenum rated (CMP) cable failed at 200C and recovered at 230C initially, but after the electrical length of the cable had decreased, subsequent failure and recovery temperatures accelerated towards higher temperature (400C). Similarly, the transition temperatures of the bandwidth of the cavity loaded with the Fluorinated Ethylene Propylene (FEP) from the Category 6 U/UTP CMP cable accelerated during the prolonged thermal cycling. The maximum reduction in the RL value of Category 6A F/UTP cable due to the 40 thermal cycles conducted was observed to be 5 % per degree, whereas the maximum Insertion Loss (IL) increase was 5.8 % per degree. Moreover, for the 24 thermal cycles conducted on Category 6 U/UTP CMP cable, an increase in IL of ~8.3 % per degree was observed while RL decreased by ~6.8 % per degree. Using the Features Selective Validation technique, the comparison between the baseline performance and long-term performance of Category 6A F/UTP permanent link (PL) showed a fair agreement, which implies degradation in the performance of the cable. Furthermore, results showed that impedance varied significantly along the length of the cable due to localised heating of the cable. The impedance along the unheated sides of the cable reverted at every 2 (0.4 m) and 4 (0.2 m) but the impedance profile of the heated middle portion of the cable varied significantly. The results of the Scanning Electron Microscope revealed the deformation in the conductor insulation of a twisted pair sample. Furthermore, the adhesion of the twisted pair conductor insulation to its copper conductor was also observed to be affected near the end of the twisted pair sample. Connector impedance mismatch was observed to be severe on the split pair pins (pair 3,6) than other pairs in the cable. The connector impedance mismatch also dominated the Near End Crosstalk (NEXT) loss at frequencies around 35 MHz. The repeated heating of the cable to a higher temperature of 1200C caused the loss of the PL at room temperature and a DC contact resistance issue which of course resulted in poor intra-pair resistance unbalance between the split pair. The Transverse Conversion Loss (TCL) and Equal Level Transverse Conversion Transfer Loss (ELTCTL) of Category 6 U/UTP CMP PL revealed some imbalances in the structure of the twisted pairs. Also, the equivalent differential mode noise voltages for the TCL values of the cable revealed a voltage spike following the decrease in the electrical length of the cable. More also, Crosstalk performance between the longest and shortest pair in the Category 6A 6 F/UTP cable was also observed to be better due to the heating of the cable in comparison to the crosstalk loss measured due to the cooling of the cable. Crosstalk performance of the portion insulated cables was initially worse during the first few heating and cooling cycles but improved afterwards. In addition, crosstalk, which was not initially present at the reference plane of the permanent link, was observed to increase rapidly from the point where the electrical length decreased. The increase in temperature to ~650C caused an accentuated frequency shift in the resonance of the FEP, which is the probable cause of the immediate performance degradation of the Category 6 U/UTP CMP cable. The dielectric constant of the extracted FEP rod sample from Category 6 U/UTP CMP cable increased as a consequence of prolonged thermal cycling, particularly during the cooling phase, which also suggests the root cause of the poor RL performance observed during the cooling phase. The increased loss tangent of the FEP during thermal cycling also indicates that IL performance degradation of the Ethernet cables will increase during the heating and cooling process in Ethernet cables. Also, on a long-term, IL performance will drift due to thermal cycling. Furthermore, various signal phase transitions were recorded during the heating and cooling of the cable and its dielectric due to the different behaviour of the molecular transitions. As a result, an echo of RL was measured during the transition between the intermittent and prolonged thermal cycling of the cable, of which can be correlated to the spurious resonance, observed in the resonance of the FEP sample during the transition period. Thus, it could be inferred that immediate and longterm effects of thermal variation influence the designed electrical properties and transmission parameters of Balanced Twisted Pair cables. Also, an immediate and long-term effect of thermal variation on the conductor insulation of the cable has a direct effect on the performance of Balanced Twisted Pair Cables
    • …
    corecore