666 research outputs found

    A Distributed ADMM Approach to Non-Myopic Path Planning for Multi-Target Tracking

    Full text link
    This paper investigates non-myopic path planning of mobile sensors for multi-target tracking. Such problem has posed a high computational complexity issue and/or the necessity of high-level decision making. Existing works tackle these issues by heuristically assigning targets to each sensing agent and solving the split problem for each agent. However, such heuristic methods reduce the target estimation performance in the absence of considering the changes of target state estimation along time. In this work, we detour the task-assignment problem by reformulating the general non-myopic planning problem to a distributed optimization problem with respect to targets. By combining alternating direction method of multipliers (ADMM) and local trajectory optimization method, we solve the problem and induce consensus (i.e., high-level decisions) automatically among the targets. In addition, we propose a modified receding-horizon control (RHC) scheme and edge-cutting method for efficient real-time operation. The proposed algorithm is validated through simulations in various scenarios.Comment: Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Multiple-objective sensor management and optimisation

    No full text
    One of the key challenges associated with exploiting modern Autonomous Vehicle technology for military surveillance tasks is the development of Sensor Management strategies which maximise the performance of the on-board Data-Fusion systems. The focus of this thesis is the development of Sensor Management algorithms which aim to optimise target tracking processes. Three principal theoretical and analytical contributions are presented which are related to the manner in which such problems are formulated and subsequently solved.Firstly, the trade-offs between optimising target tracking and other system-level objectives relating to expected operating lifetime are explored in an autonomous ground sensor scenario. This is achieved by modelling the observer trajectory control design as a probabilistic, information-theoretic, multiple-objective optimisation problem. This novel approach explores the relationships between the changes in sensor-target geometry that are induced by tracking performance measures and those relating to power consumption. This culminates in a novel observer trajectory control algorithm based onthe minimax approach.The second contribution is an analysis of the propagation of error through a limited-lookahead sensor control feedback loop. In the last decade, it has been shown that the use of such non-myopic (multiple-step) planning strategies can lead to superior performance in many Sensor Management scenarios. However, relatively little is known about the performance of strategies which use different horizon lengths. It is shown that, in the general case, planning performance is a function of the length of the horizon over which the optimisation is performed. While increasing the horizon maximises the chances of achieving global optimality, by revealing information about the substructureof the decision space, it also increases the impact of any prediction error, approximations, or unforeseen risk present within the scenario. These competing mechanisms aredemonstrated using an example tracking problem. This provides the motivation for a novel sensor control methodology that employs an adaptive length optimisation horizon. A route to selecting the optimal horizon size is proposed, based on a new non-myopic risk equilibrium which identifies the point where the two competing mechanisms are balanced.The third area of contribution concerns the development of a number of novel optimisation algorithms aimed at solving the resulting sequential decision making problems. These problems are typically solved using stochastic search methods such as Genetic Algorithms or Simulated Annealing. The techniques presented in this thesis are extensions of the recently proposed Repeated Weighted Boosting Search algorithm. In its originalform, it is only applicable to continuous, single-objective, ptimisation problems. The extensions facilitate application to mixed search spaces and Pareto multiple-objective problems. The resulting algorithms have performance comparable with Genetic Algorithm variants, and offer a number of advantages such as ease of implementation and limited tuning requirements

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Communication Efficiency in Information Gathering through Dynamic Information Flow

    Get PDF
    This thesis addresses the problem of how to improve the performance of multi-robot information gathering tasks by actively controlling the rate of communication between robots. Examples of such tasks include cooperative tracking and cooperative environmental monitoring. Communication is essential in such systems for both decentralised data fusion and decision making, but wireless networks impose capacity constraints that are frequently overlooked. While existing research has focussed on improving available communication throughput, the aim in this thesis is to develop algorithms that make more efficient use of the available communication capacity. Since information may be shared at various levels of abstraction, another challenge is the decision of where information should be processed based on limits of the computational resources available. Therefore, the flow of information needs to be controlled based on the trade-off between communication limits, computation limits and information value. In this thesis, we approach the trade-off by introducing the dynamic information flow (DIF) problem. We suggest variants of DIF that either consider data fusion communication independently or both data fusion and decision making communication simultaneously. For the data fusion case, we propose efficient decentralised solutions that dynamically adjust the flow of information. For the decision making case, we present an algorithm for communication efficiency based on local LQ approximations of information gathering problems. The algorithm is then integrated with our solution for the data fusion case to produce a complete communication efficiency solution for information gathering. We analyse our suggested algorithms and present important performance guarantees. The algorithms are validated in a custom-designed decentralised simulation framework and through field-robotic experimental demonstrations
    corecore