968 research outputs found

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Health Care Equity Through Intelligent Edge Computing and Augmented Reality/Virtual Reality: A Systematic Review

    Get PDF
    Intellectual capital is a scarce resource in the healthcare industry. Making the most of this resource is the first step toward achieving a completely intelligent healthcare system. However, most existing centralized and deep learning-based systems are unable to adapt to the growing volume of global health records and face application issues. To balance the scarcity of healthcare resources, the emerging trend of IoMT (Internet of Medical Things) and edge computing will be very practical and cost-effective. A full examination of the transformational role of intelligent edge computing in the IoMT era to attain health care equity is offered in this research. Intelligent edge computing-aided distribution and collaborative information management is a possible approach for a long-term digital healthcare system. Furthermore, IEC (Intelligent Edge Computing) encourages digital health data to be processed only at the edge, minimizing the amount of information exchanged with central servers/the internet. This significantly increases the privacy of digital health data. Another critical component of a sustainable healthcare system is affordability in digital healthcare. Affordability in digital healthcare is another key component of a sustainable healthcare system. Despite its importance, it has received little attention due to its complexity. In isolated and rural areas where expensive equipment is unavailable, IEC with AR / VR, also known as edge device shadow, can play a significant role in the inexpensive data collection process. Healthcare equity becomes a reality by combining intelligent edge device shadows and edge computing

    Therapeutic Strategies in Architecture for Senior Care and Rehabilition

    Get PDF
    My research is in developing a new building typology for the elderly retirement population. Retirement funds are often eaten up by poor planning and hasty decisions which can jeopardize their health. Hawaii has a large elderly population and I see a great need to address this problem now, as the largest demographic group is now retiring. Hypothesis: Retirement hangs as the preverbal carrot for most people in our rapidly paced society. The reward for life of hard work too often becomes a sedentary activity that encourages the degeneration of our physical body. Architecture for retirees often facilitates this and designs for a lethargic lifestyle. The consistent pattern for elderly is a ‘fall’, which then leads to a back-and-forth to the hospital. Most of the time, the fall occurs within a ‘designed’ space. The research goal is to develop design strategies, design components, and awareness of the problems. Just as ADA (American’s with Disabilities Act) is the product of awareness and energy to a neglected demographic, the elderly should have strong design influences. The desired outcome for the project is to prepare for a design that addresses the needs for this elderly age group . Gaining an understanding of the demographic, the needs, hazards, and opportunities will prepare me for the design process. Specific solutions ranging from therapeutic spaces to technical solutions for improved mobility and independence will be investigated. In urban or suburban places, our mobility is based on options presented to us. These are intentional designs and understanding how ‘designed circulation’ develops certain muscles while others are lost, helps me design spaces that become therapeutic and incorporate the muscles that are lost. Case studies will be investigated to gain parameters on cost, and design solutions. Emerging theories in senior health care incorporate more activity throughout the day compared to a periodic ‘exercise’ time. Architecture can facilitate this approach of a steady flow of stimulus and activity.My research is in developing a new building typology for the elderly retirement population. Retirement funds are often eaten up by poor planning and hasty decisions which can jeopardize their health. Hawaii has a large elderly population and I see a great need to address this problem now, as the largest demographic group is now retiring. Hypothesis: Retirement hangs as the preverbal carrot for most people in our rapidly paced society. The reward for life of hard work too often becomes a sedentary activity that encourages the degeneration of our physical body. Architecture for retirees often facilitates this and designs for a lethargic lifestyle. The consistent pattern for elderly is a ‘fall’, which then leads to a back-and-forth to the hospital. Most of the time, the fall occurs within a ‘designed’ space. The research goal is to develop design strategies, design components, and awareness of the problems. Just as ADA (American’s with Disabilities Act) is the product of awareness and energy to a neglected demographic, the elderly should have strong design influences. The desired outcome for the project is to prepare for a design that addresses the needs for this elderly age group . Gaining an understanding of the demographic, the needs, hazards, and opportunities will prepare me for the design process. Specific solutions ranging from therapeutic spaces to technical solutions for improved mobility and independence will be investigated. In urban or suburban places, our mobility is based on options presented to us. These are intentional designs and understanding how ‘designed circulation’ develops certain muscles while others are lost, helps me design spaces that become therapeutic and incorporate the muscles that are lost. Case studies will be investigated to gain parameters on cost, and design solutions. Emerging theories in senior health care incorporate more activity throughout the day compared to a periodic ‘exercise’ time. Architecture can facilitate this approach of a steady flow of stimulus and activity.My research is in developing a new building typology for the elderly retirement population. Retirement funds are often eaten up by poor planning and hasty decisions which can jeopardize their health. Hawaii has a large elderly population and I see a great need to address this problem now, as the largest demographic group is now retiring. Hypothesis: Retirement hangs as the preverbal carrot for most people in our rapidly paced society. The reward for life of hard work too often becomes a sedentary activity that encourages the degeneration of our physical body. Architecture for retirees often facilitates this and designs for a lethargic lifestyle. The consistent pattern for elderly is a ‘fall’, which then leads to a back-and-forth to the hospital. Most of the time, the fall occurs within a ‘designed’ space. The research goal is to develop design strategies, design components, and awareness of the problems. Just as ADA (American’s with Disabilities Act) is the product of awareness and energy to a neglected demographic, the elderly should have strong design influences. The desired outcome for the project is to prepare for a design that addresses the needs for this elderly age group . Gaining an understanding of the demographic, the needs, hazards, and opportunities will prepare me for the design process. Specific solutions ranging from therapeutic spaces to technical solutions for improved mobility and independence will be investigated. In urban or suburban places, our mobility is based on options presented to us. These are intentional designs and understanding how ‘designed circulation’ develops certain muscles while others are lost, helps me design spaces that become therapeutic and incorporate the muscles that are lost. Case studies will be investigated to gain parameters on cost, and design solutions. Emerging theories in senior health care incorporate more activity throughout the day compared to a periodic ‘exercise’ time. Architecture can facilitate this approach of a steady flow of stimulus and activity

    Naval Reserve support to information Operations Warfighting

    Get PDF
    Since the mid-1990s, the Fleet Information Warfare Center (FIWC) has led the Navy's Information Operations (IO) support to the Fleet. Within the FIWC manning structure, there are in total 36 officer and 84 enlisted Naval Reserve billets that are manned to approximately 75 percent and located in Norfolk and San Diego Naval Reserve Centers. These Naval Reserve Force personnel could provide support to FIWC far and above what they are now contributing specifically in the areas of Computer Network Operations, Psychological Operations, Military Deception and Civil Affairs. Historically personnel conducting IO were primarily reservists and civilians in uniform with regular military officers being by far the minority. The Naval Reserve Force has the personnel to provide skilled IO operators but the lack of an effective manning document and training plans is hindering their opportunity to enhance FIWC's capabilities in lull spectrum IO. This research investigates the skill requirements of personnel in IO to verify that the Naval Reserve Force has the talent base for IO support and the feasibility of their expanded use in IO.http://archive.org/details/navalreservesupp109451098

    Reliable, Context-Aware and Energy-Efficient Architecture for Wireless Body Area Networks in Sports Applications

    Get PDF
    RÉSUMÉ Un RĂ©seau Corporel Sans Fil (RCSF, Wireless Body Area Network en anglais ou WBAN) permet de collecter de l'information Ă  partir de capteurs corporels. Cette information est envoyĂ©e Ă  un hub qui la transforme et qui peut aussi effectuer d'autres fonctions comme gĂ©rer des Ă©vĂ©nements corporels, fusionner les donnĂ©es Ă  partir des capteurs, percevoir d’autres paramĂštres, exĂ©cuter les fonctions d’une interface d’utilisateur, et faire un lien vers des infrastructures de plus haut niveau et d’autres parties prenantes. La rĂ©duction de la consommation d'Ă©nergie d’un RCSF est un des aspects les plus importants qui doit ĂȘtre amĂ©liorĂ© lors de sa conception. Cet aspect peut impliquer le dĂ©veloppement de protocoles de ContrĂŽles d'AccĂšs au Support (CAS, Media Access Control en anglais ou MAC), protocoles de transport et de routage plus efficients. Le contrĂŽle de la congestion est un autre des facteurs les plus importants dans la conception d’un RCSF, parce que la congestion influe directement sur la QualitĂ© De Service (QDS, Quality of Service en anglais ou QoS) et l’efficience en Ă©nergie du rĂ©seau. La congestion dans un RCSF peut produire une grande perte de paquets et une haute consommation d’énergie. La QDS est directement impactĂ©e par la perte de paquets. L’implĂ©mentation de mesures additionnelles est nĂ©cessaire pour attĂ©nuer l’impact sur la communication des RCSF. Les protocoles de CAS pour RCSF devraient permettre aux capteurs corporels d’accĂ©der rapidement au canal de communication et d’envoyer les donnĂ©es au hub, surtout pour les Ă©vĂ©nements urgents tout en rĂ©duisant la consommation d’énergie. Les protocoles de transport pour RCSF doivent fournir de la fiabilitĂ© bout-Ă -bout et de la QDS pour tout le rĂ©seau. Cette tĂąche peut ĂȘtre accomplie par la rĂ©duction du ratio de perte de paquets (Packet Loss Ratio en anglais ou PLR) et de la latence tout en gardant l'Ă©quitĂ© et la faible consommation d'Ă©nergie entre les noeuds. Le standard IEEE 802.15.6 suggĂšre un protocole de CAS qui est destinĂ© Ă  ĂȘtre applicable Ă  tous les types de RCSF; toutefois, ce protocole peut ĂȘtre amĂ©liorĂ© pour les RCSF utilisĂ©s dans le domaine du sport, oĂč la gestion du trafic pourrait ĂȘtre diffĂ©rente d’autres rĂ©seaux. Le standard IEEE 802.15.6 comprend la QDS, mais cela ne suggĂšre aucun protocole de transport ou systĂšme de contrĂŽle du dĂ©bit. Le but principal de ce projet de recherche est de concevoir une architecture pour RCSF en trois phases : (i) Conception d’un mĂ©canisme sensible au contexte et efficient en Ă©nergie pour fournir une QDS aux RCSF; (ii) Conception d’un mĂ©canisme fiable et efficient en Ă©nergie pour fournir une rĂ©cupĂ©ration des paquets perdus et de l’équitĂ© dans les RCSF; et (iii) Conception d’un systĂšme de contrĂŽle du dĂ©bit sensible au contexte pour fournir un contrĂŽle de congestion aux RCSF. Finalement, ce projet de recherche propose une architecture fiable, sensible au contexte et efficiente en Ă©nergie pour RCSF utilisĂ©s dans le domaine du sport. Cette architecture fait face Ă  quatre dĂ©fis : l'efficacitĂ© de l'Ă©nergie, la sensibilitĂ© au contexte, la qualitĂ© de service et la fiabilitĂ©. La mise en place de cette solution aidera Ă  l’amĂ©lioration des compĂ©tences, de la performance, de l’endurance et des protocoles d’entraĂźnement des athlĂštes, ainsi qu’à la dĂ©tection des points faibles. Cette solution pourrait ĂȘtre prolongĂ©e Ă  l’amĂ©lioration de la qualitĂ© de vie des enfants, des personnes malades ou ĂągĂ©es, ou encore aux domaines militaires, de la sĂ©curitĂ© et du divertissement. L’évaluation des protocoles et schĂ©mas proposĂ©s a Ă©tĂ© faite par simulations programmĂ©es avec le simulateur OMNeT++ et le systĂšme Castalia. PremiĂšrement, le protocole de CAS proposĂ© a Ă©tĂ© comparĂ© avec les protocoles de CAS suivants : IEEE 802.15.6, IEEE 802.15.4 et T-MAC (Timeout MAC). DeuxiĂšmement, le protocole de CAS proposĂ© a Ă©tĂ© comparĂ© avec le standard IEEE 802.15.6 avec et sans l’utilisation du protocole de transport proposĂ©. Finalement, le protocole de CAS proposĂ© et le standard IEEE 802.15.6 ont Ă©tĂ© comparĂ©s avec et sans l’utilisation du systĂšme de contrĂŽle du dĂ©bit proposĂ©. Le protocole de CAS proposĂ© surpasse les protocoles de CAS IEEE 802.15.6, IEEE 802.15.4 et T-MAC dans le pourcentage de pertes de paquets d’urgence et normaux, l’efficacitĂ© en Ă©nergie, et la latence du trafic d’urgence et du trafic normal. Le protocole de CAS proposĂ© utilisĂ© avec le protocole du transport proposĂ© surpasse la performance du standard IEEE 802.15.6 dans le pourcentage de perte de paquets avec ou sans trafic d’urgence, l’efficacitĂ© en Ă©nergie, et la latence du trafic normal. Le systĂšme de contrĂŽle du dĂ©bit proposĂ© a amĂ©liorĂ© la performance du protocole de CAS proposĂ© et du standard IEEE 802.15.6 dans le pourcentage de perte de paquets avec ou sans trafic d’urgence, l’efficacitĂ© en Ă©nergie, et la latence du trafic d’urgence.----------ABSTRACT Information collected from body sensors in a Wireless Body Area Network (WBAN) is sent to a hub or coordinator which processes the information and can also perform other functions such as managing body events, merging data from sensors, sensing other parameters, performing the functions of a user interface and bridging the WBAN to higher-level infrastructure and other stakeholders. The reduction of the power consumption of a WBAN is one of the most important aspects to be improved when designing a WBAN. This challenge might imply the development of more efficient Medium Access Control (MAC), transport and routing protocols. Congestion control is another of the most important factors when a WBAN is designed, due to its direct impact in the Quality of Service (QoS) and the energy efficiency of the network. The presence of congestion in a WBAN can produce a big packet loss and high energy consumption. The QoS is also impacted directly by the packet loss. The implementation of additional measures is necessary to mitigate the impact on WBAN communications. The MAC protocols for WBANs should allow body sensors to get quick access to the channel and send data to the hub, especially in emergency events while reducing the power consumption. The transport protocols for WBANs must provide end-to-end reliability and QoS for the whole network. This task can be accomplished through the reduction of both the Packet Loss Ratio (PLR) and the latency while keeping fairness and low power consumption between nodes. The IEEE 802.15.6 standard suggests a MAC protocol which is intended to be applicable for all kinds of WBANs. Nonetheless, it could be improved for sports WBANs where the traffic-types handling could be different from other networks. The IEEE 802.15.6 standard supports QoS, but it does not suggest any transport protocol or rate control scheme. The main objective of this research project is to design an architecture for WBANs in three phases: (i) Designing a context-aware and energy-efficient mechanism for providing QoS in WBANs; (ii) Designing a reliable and energy-efficient mechanism to provide packet loss recovery and fairness in WBANs; and (iii) Designing a context-aware rate control scheme to provide congestion control in WBANs. Finally, this research project proposes a reliable, context-aware and energy-efficient architecture for WBANs used in sports applications, facing four challenges: energy efficiency, context awareness, quality of service and reliability. The benefits of this solution will help to improve skills, performance, endurance and training protocols of athletes, and deficiency detection. Also, it could be extended to enhance the quality of life of children, ill and elderly people, and to security, military and entertainment fields. The evaluation of the proposed protocols and schemes was made through simulations programed in the OMNeT++ simulator and the Castalia framework. First, the proposed MAC protocol was compared against the IEEE 802.15.6 MAC protocol, the IEEE 802.15.4 MAC protocol and the T-MAC (Timeout MAC) protocol. Second, the proposed MAC protocol was compared with the IEEE 802.15.6 standard with and without the use of the proposed transport protocol. Finally, both the proposed MAC protocol and the IEEE 802.15.6 standard were compared with and without the use of the proposed rate control scheme. The proposed MAC protocol outperforms the IEEE 802.15.6 MAC protocol, the IEEE 802.15.4 MAC protocol and the T-MAC protocol in the percentage of emergency and normal packet loss, the energy effectiveness, and the latency of emergency and normal traffic. The proposed MAC protocol working along with the proposed transport protocol outperforms the IEEE 802.15.6 standard in the percentage of the packet loss with or without emergency traffic, the energy effectiveness, and the latency of normal traffic. The proposed rate control scheme improved the performance of both the proposed MAC protocol and the IEEE 802.15.6 standard in the percentage of the packet loss with or without emergency traffic, the energy effectiveness and the latency of emergency traffic

    Design Of Computer Vision Systems For Optimizing The Threat Detection Accuracy

    Get PDF
    This dissertation considers computer vision (CV) systems in which a central monitoring station receives and analyzes the video streams captured and delivered wirelessly by multiple cameras. It addresses how the bandwidth can be allocated to various cameras by presenting a cross-layer solution that optimizes the overall detection or recognition accuracy. The dissertation presents and develops a real CV system and subsequently provides a detailed experimental analysis of cross-layer optimization. Other unique features of the developed solution include employing the popular HTTP streaming approach, utilizing homogeneous cameras as well as heterogeneous ones with varying capabilities and limitations, and including a new algorithm for estimating the effective medium airtime. The results show that the proposed solution significantly improves the CV accuracy. Additionally, the dissertation features an improved neural network system for object detection. The proposed system considers inherent video characteristics and employs different motion detection and clustering algorithms to focus on the areas of importance in consecutive frames, allowing the system to dynamically and efficiently distribute the detection task among multiple deployments of object detection neural networks. Our experimental results indicate that our proposed method can enhance the mAP (mean average precision), execution time, and required data transmissions to object detection networks. Finally, as recognizing an activity provides significant automation prospects in CV systems, the dissertation presents an efficient activity-detection recurrent neural network that utilizes fast pose/limbs estimation approaches. By combining object detection with pose estimation, the domain of activity detection is shifted from a volume of RGB (Red, Green, and Blue) pixel values to a time-series of relatively small one-dimensional arrays, thereby allowing the activity detection system to take advantage of highly capable neural networks that have been trained on large GPU clusters for thousands of hours. Consequently, capable activity detection systems with considerably fewer training sets and processing hours can be built

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Integrating passive ubiquitous surfaces into human-computer interaction

    Get PDF
    Mobile technologies enable people to interact with computers ubiquitously. This dissertation investigates how ordinary, ubiquitous surfaces can be integrated into human-computer interaction to extend the interaction space beyond the edge of the display. It turns out that acoustic and tactile features generated during an interaction can be combined to identify input events, the user, and the surface. In addition, it is shown that a heterogeneous distribution of different surfaces is particularly suitable for realizing versatile interaction modalities. However, privacy concerns must be considered when selecting sensors, and context can be crucial in determining whether and what interaction to perform.Mobile Technologien ermöglichen den Menschen eine allgegenwĂ€rtige Interaktion mit Computern. Diese Dissertation untersucht, wie gewöhnliche, allgegenwĂ€rtige OberflĂ€chen in die Mensch-Computer-Interaktion integriert werden können, um den Interaktionsraum ĂŒber den Rand des Displays hinaus zu erweitern. Es stellt sich heraus, dass akustische und taktile Merkmale, die wĂ€hrend einer Interaktion erzeugt werden, kombiniert werden können, um Eingabeereignisse, den Benutzer und die OberflĂ€che zu identifizieren. DarĂŒber hinaus wird gezeigt, dass eine heterogene Verteilung verschiedener OberflĂ€chen besonders geeignet ist, um vielfĂ€ltige InteraktionsmodalitĂ€ten zu realisieren. Bei der Auswahl der Sensoren mĂŒssen jedoch Datenschutzaspekte berĂŒcksichtigt werden, und der Kontext kann entscheidend dafĂŒr sein, ob und welche Interaktion durchgefĂŒhrt werden soll
    • 

    corecore