7,913 research outputs found

    An interactive 3-D application for pain management: Results from a pilot study in spinal cord injury rehabilitation

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElevierResearch on pain following spinal cord injury (SCI) has revealed that patients not only experience several types of pain that could prove to be challenging to address, but also that each individual can interpret such pain in different subjective ways. In this paper we introduce a 3-D system for facilitating the efficient management of pain, and thus, supporting clinicians in overcoming the aforementioned challenges. This system was evaluated by a cohort of 15 SCI patients in a pilot study that took place between July and October 2010. Participants reported their experiences of using the 3-D system in an adapted version of the System Usability Scale (SUS) questionnaire. Statistically significant results were obtained with regards to the usability and efficiency of the 3-D system, with the majority of the patients finding it particularly useful to report their pain. Our findings suggest that the 3-D system can be an efficient tool in the efforts to better manage the pain experience of SCI patients

    My heart is racing! Psychophysiological dynamics of skilled racecar drivers

    Get PDF
    Our purpose was to test the multi-action plan (MAP) model assumptions in which athletes’ psychophysiological patterns differ among optimal and suboptimal performance experiences. Nine professional drivers competing in premier race categories (e.g., Formula 3, Porsche GT3 Cup Challenge) completed the study. Data collection involved monitoring the drivers’ perceived hedonic tone, accuracy on core components of action, posture, skin temperature, respiration rate, and heart rate responses during a 40-lap simulated race. Time marks, gathered at three standardized sectors, served as the performance variable. The A1GP racing simulator (Allinsport, Modena) established a realistic race platform. Specifically, the Barcelona track was chosen due to its inherently difficult nature characterized by intermittent deceleration points. Idiosyncratic analyses showed large individual differences in the drivers’ psychophysiological profile, as well as distinct patterns in regards to optimal and suboptimal performance experiences. Limitations and future research avenues are discussed. Action (e.g., attentional control) and emotion (e.g., biofeedback training) centered applied sport psychology implications are advanced

    Unsupervised Parkinson’s Disease Assessment

    Get PDF
    Parkinson’s Disease (PD) is a progressive neurological disease that affects 6.2 million people worldwide. The most popular clinical method to measure PD tremor severity is a standardized test called the Unified Parkinson’s Disease Rating Scale (UPDRS), which is performed subjectively by a medical professional. Due to infrequent checkups and human error introduced into the process, treatment is not optimally adjusted for PD patients. According to a recent review there are two devices recommended to objectively quantify PD symptom severity. Both devices record a patient’s tremors using inertial measurement units (IMUs). One is not currently available for over the counter purchases, as they are currently undergoing clinical trials. It has also been used in studies to evaluate to UPDRS scoring in home environments using an Android application to drive the tests. The other is an accessible product used by researchers to design home monitoring systems for PD tremors at home. Unfortunately, this product includes only the sensor and requires technical expertise and resources to set up the system. In this paper, we propose a low-cost and energy-efficient hybrid system that monitors a patient’s daily actions to quantify hand and finger tremors based on relevant UPDRS tests using IMUs and surface Electromyography (sEMG). This device can operate in a home or hospital environment and reduces the cost of evaluating UPDRS scores from both patient and the clinician’s perspectives. The system consists of a wearable device that collects data and wirelessly communicates with a local server that performs data analysis. The system does not require any choreographed actions so that there is no need for the user to follow any unwieldy peripheral. In order to avoid frequent battery replacement, we employ a very low-power wireless technology and optimize the software for energy efficiency. Each collected signal is filtered for motion classification, where the system determines what analysis methods best fit with each period of signals. The corresponding UPDRS algorithms are then used to analyze the signals and give a score to the patient. We explore six different machine learning algorithms to classify a patient’s actions into appropriate UPDRS tests. To verify the platform’s usability, we conducted several tests. We measured the accuracy of our main sensors by comparing them with a medically approved industry device. The our device and the industry device show similarities in measurements with errors acceptable for the large difference in cost. We tested the lifetime of the device to be 15.16 hours minimum assuming the device is constantly on. Our filters work reliably, demonstrating a high level of similarity to the expected data. Finally, the device is run through and end-to-end sequence, where we demonstrate that the platform can collect data and produce a score estimate for the medical professionals

    A Wii Bit of Fun: A Novel Platform to Deliver Effective Balance Training to Older Adults

    Get PDF
    BACKGROUND: Falls and fall-related injuries are symptomatic of an aging population. This study aimed to design, develop, and deliver a novel method of balance training, using an interactive game-based system to promote engagement, with the inclusion of older adults at both high and low risk of experiencing a fall.STUDY DESIGN: Eighty-two older adults (65 years of age and older) were recruited from sheltered accommodation and local activity groups. Forty volunteers were randomly selected and received 5 weeks of balance game training (5 males, 35 females; mean, 77.18 ± 6.59 years), whereas the remaining control participants recorded levels of physical activity (20 males, 22 females; mean, 76.62 ± 7.28 years). The effect of balance game training was measured on levels of functional balance and balance confidence in individuals with and without quantifiable balance impairments.RESULTS: Balance game training had a significant effect on levels of functional balance and balance confidence (P Peer reviewedFinal Published versio

    Effects of Feedback-Supported Online Training during the Coronavirus Lockdown on Posture in Children and Adolescents

    Get PDF
    (1) Background. The coronavirus pandemic had a serious impact on the everyday life of children and young people with sometimes drastic effects on daily physical activity time that could have led to posture imbalances. The aim of the study was to examine whether a six-week, feedbacksupported online training programme could improve posture parameters in young soccer players. (2) Methods. Data of 170 adolescent soccer players (age 15.6 ± 1.6 years) were analyzed. A total of 86 soccer players of a youth academy participated in an online training program that included eight exercises twice per week for 45 min (Zoom group). The participants’ exercise execution could be monitored and corrected via smartphone or laptop camera. Before and after the training intervention, participants’ posture was assessed using photographic analysis. The changes of relevant posture parameters (perpendicular positions of ear, shoulder and hips, pelvic tilt, trunk tilt and sacral angle) were statistically tested by robust mixed ANOVA using trimmed means. Postural parameters were also assessed post hoc at 8-week intervals in a control group of 84 participants of the same age. (3) Results. We found a statistically significant interaction (p < 0.05) between time and group for trunk tilt, head and shoulder protrusion and for hip anteversion in the Zoom group. No changes were found for these parameters in the control group. For pelvic tilt no significant changes were found. (4) Conclusions. Feedback-based online training with two 45 min sessions per week can improve postural parameters in adolescent soccer players over a period of six weeks

    Automatic identification of gait events using an instrumented sock

    Get PDF
    Background: textile-based transducers are an emerging technology in which piezo-resistive properties of materials are used to measure an applied strain. By incorporating these sensors into a sock, this technology offers the potential to detect critical events during the stance phase of the gait cycle. This could prove useful in several applications, such as functional electrical stimulation (FES) systems to assist gait. Methods: we investigated the output of a knitted resistive strain sensor during walking and sought to determine the degree of similarity between the sensor output and the ankle angle in the sagittal plane. In addition, we investigated whether it would be possible to predict three key gait events, heel strike, heel lift and toe off, with a relatively straight-forward algorithm. This worked by predicting gait events to occur at fixed time offsets from specific peaks in the sensor signal. Results: our results showed that, for all subjects, the sensor output exhibited the same general characteristics as the ankle joint angle. However, there were large between-subjects differences in the degree of similarity between the two curves. Despite this variability, it was possible to accurately predict gait events using a simple algorithm. This algorithm displayed high levels of trial-to-trial repeatability. Conclusions: this study demonstrates the potential of using textile-based transducers in future devices that provide active gait assistance

    Embedded neonatal respiration monitoring

    Get PDF
    Current neonatal monitoring methods are not very comfortable for the neonate. The sticky electrodes used to measure the heart and breathing rate, can cause skin irritations and skin lesions when being pulled off. Furthermore, all the wires create a barrier for parents to touch and interact with their child.The E-Nemo (Embedded Neonatal Monitoring) project intends to change the way in which (premature) neonates are monitored in the neonatal intensive care unit (NICU). The aim of E-Nemo is to create a patient support system that assures comfort for the neonate and provides a more friendly environment for parental bonding, whilst keeping the current quality of vital sign monitoring.This report concerns the work related to the monitoring of only one vitals sign, namely: respiration.The aim of the E-Nemo respiration monitoring project is to design and develop a neonatal respiration monitoring system using sensors embedded in a patient support system (e.g., a mattress).A key challenge of this system is achieving the same robustness and reliability as existing monitoring equipment for neonates.Before the respiration sensor can be moved from the chest of the neonate into the underlying support system some questions need to be answered. Such as: Where can we place this sensor? Is one sensor enough? Which type of sensor is most suitable?To answer these (and more) questions regarding the design of the neonatal respiration monitoring system, a clinical trial was conducted at the NICU of the Máxima Medical Centre in Veldhoven.During this trial firsthand knowledge on the position and movement of neonates in an incubator, and general NICU workflow issues was gained.The clinical trial has resulted in a list of design specifications for the neonatal respiration monitoring system and a better understanding of the workflow and possible measurement disturbances in a NICU.Furthermore, this project has successfully demonstrated the possibility of measuring the neonatal respiration signal without direct skin contact with the neonate. However, in order to achieve the quality and reliability needed for intensive care respiration monitoring more research is necessary.Measuring the deformation of the mattress is expected to be a better measure for the respiration movements, than the pressure changes underneath the mattress which were measured in this study.Furthermore, more research is needed to determine the accuracy that will be demanded of the system, as this research has demonstrated that the current gold standard (transthoracic impedance plethysmography) does not function continously either
    • …
    corecore