755 research outputs found

    Momentum Control with Hierarchical Inverse Dynamics on a Torque-Controlled Humanoid

    Full text link
    Hierarchical inverse dynamics based on cascades of quadratic programs have been proposed for the control of legged robots. They have important benefits but to the best of our knowledge have never been implemented on a torque controlled humanoid where model inaccuracies, sensor noise and real-time computation requirements can be problematic. Using a reformulation of existing algorithms, we propose a simplification of the problem that allows to achieve real-time control. Momentum-based control is integrated in the task hierarchy and a LQR design approach is used to compute the desired associated closed-loop behavior and improve performance. Extensive experiments on various balancing and tracking tasks show very robust performance in the face of unknown disturbances, even when the humanoid is standing on one foot. Our results demonstrate that hierarchical inverse dynamics together with momentum control can be efficiently used for feedback control under real robot conditions.Comment: 21 pages, 11 figures, 4 tables in Autonomous Robots (2015

    On Time Optimization of Centroidal Momentum Dynamics

    Full text link
    Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing.Comment: 7 pages, 4 figures, ICRA 201

    Multi-contact Walking Pattern Generation based on Model Preview Control of 3D COM Accelerations

    Get PDF
    We present a multi-contact walking pattern generator based on preview-control of the 3D acceleration of the center of mass (COM). A key point in the design of our algorithm is the calculation of contact-stability constraints. Thanks to a mathematical observation on the algebraic nature of the frictional wrench cone, we show that the 3D volume of feasible COM accelerations is a always a downward-pointing cone. We reduce its computation to a convex hull of (dual) 2D points, for which optimal O(n log n) algorithms are readily available. This reformulation brings a significant speedup compared to previous methods, which allows us to compute time-varying contact-stability criteria fast enough for the control loop. Next, we propose a conservative trajectory-wide contact-stability criterion, which can be derived from COM-acceleration volumes at marginal cost and directly applied in a model-predictive controller. We finally implement this pipeline and exemplify it with the HRP-4 humanoid model in multi-contact dynamically walking scenarios

    Offline and Online Planning and Control Strategies for the Multi-Contact and Biped Locomotion of Humanoid Robots

    Get PDF
    In the past decades, the Research on humanoid robots made progress forward accomplishing exceptionally dynamic and agile motions. Starting from the DARPA Robotic Challenge in 2015, humanoid platforms have been successfully employed to perform more and more challenging tasks with the eventual aim of assisting or replacing humans in hazardous and stressful working situations. However, the deployment of these complex machines in realistic domestic and working environments still represents a high-level challenge for robotics. Such environments are characterized by unstructured and cluttered settings with continuously varying conditions due to the dynamic presence of humans and other mobile entities, which cannot only compromise the operation of the robotic system but can also pose severe risks both to the people and the robot itself due to unexpected interactions and impacts. The ability to react to these unexpected interactions is therefore a paramount requirement for enabling the robot to adapt its behavior to the task needs and the characteristics of the environment. Further, the capability to move in a complex and varying environment is an essential skill for a humanoid robot for the execution of any task. Indeed, human instructions may often require the robot to move and reach a desired location, e.g., for bringing an object or for inspecting a specific place of an infrastructure. In this context, a flexible and autonomous walking behavior is an essential skill, study of which represents one of the main topics of this Thesis, considering disturbances and unfeasibilities coming both from the environment and dynamic obstacles that populate realistic scenarios.  Locomotion planning strategies are still an open theme in the humanoids and legged robots research and can be classified in sample-based and optimization-based planning algorithms. The first, explore the configuration space, finding a feasible path between the start and goal robot’s configuration with different logic depending on the algorithm. They suffer of a high computational cost that often makes difficult, if not impossible, their online implementations but, compared to their counterparts, they do not need any environment or robot simplification to find a solution and they are probabilistic complete, meaning that a feasible solution can be certainly found if at least one exists. The goal of this thesis is to merge the two algorithms in a coupled offline-online planning framework to generate an offline global trajectory with a sample-based approach to cope with any kind of cluttered and complex environment, and online locally refine it during the execution, using a faster optimization-based algorithm that more suits an online implementation. The offline planner performances are improved by planning in the robot contact space instead of the whole-body robot configuration space, requiring an algorithm that maps the two state spaces.   The framework proposes a methodology to generate whole-body trajectories for the motion of humanoid and legged robots in realistic and dynamically changing environments.  This thesis focuses on the design and test of each component of this planning framework, whose validation is carried out on the real robotic platforms CENTAURO and COMAN+ in various loco-manipulation tasks scenarios. &nbsp

    Torque-Controlled Stepping-Strategy Push Recovery: Design and Implementation on the iCub Humanoid Robot

    Full text link
    One of the challenges for the robotics community is to deploy robots which can reliably operate in real world scenarios together with humans. A crucial requirement for legged robots is the capability to properly balance on their feet, rejecting external disturbances. iCub is a state-of-the-art humanoid robot which has only recently started to balance on its feet. While the current balancing controller has proved successful in various scenarios, it still misses the capability to properly react to strong pushes by taking steps. This paper goes in this direction. It proposes and implements a control strategy based on the Capture Point concept [1]. Instead of relying on position control, like most of Capture Point related approaches, the proposed strategy generates references for the momentum-based torque controller already implemented on the iCub, thus extending its capabilities to react to external disturbances, while retaining the advantages of torque control when interacting with the environment. Experiments in the Gazebo simulator and on the iCub humanoid robot validate the proposed strategy

    Imprecise dynamic walking with time-projection control

    Get PDF
    We present a new walking foot-placement controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of the 3LP model, our proposed controller projects intermediate states of the biped back to the beginning of the phase for which a discrete LQR controller is designed. After the projection, a proper control policy is generated by this LQR controller and used at the intermediate time. This control paradigm reacts to disturbances immediately and includes rules to account for swing dynamics and leg-retraction. We apply it to a simulated Atlas robot in position-control, always commanded to perform in-place walking. The stance hip joint in our robot keeps the torso upright to let the robot naturally fall, and the swing hip joint tracks the desired footstep location. Combined with simple Center of Pressure (CoP) damping rules in the low-level controller, our foot-placement enables the robot to recover from strong pushes and produce periodic walking gaits when subject to persistent sources of disturbance, externally or internally. These gaits are imprecise, i.e., emergent from asymmetry sources rather than precisely imposing a desired velocity to the robot. Also in extreme conditions, restricting linearity assumptions of the 3LP model are often violated, but the system remains robust in our simulations. An extensive analysis of closed-loop eigenvalues, viable regions and sensitivity to push timings further demonstrate the strengths of our simple controller

    Motion Planning and Control of Dynamic Humanoid Locomotion

    Get PDF
    Inspired by human, humanoid robots has the potential to become a general-purpose platform that lives along with human. Due to the technological advances in many field, such as actuation, sensing, control and intelligence, it finally enables humanoid robots to possess human comparable capabilities. However, humanoid locomotion is still a challenging research field. The large number of degree of freedom structure makes the system difficult to coordinate online. The presence of various contact constraints and the hybrid nature of locomotion tasks make the planning a harder problem to solve. Template model anchoring approach has been adopted to bridge the gap between simple model behavior and the whole-body motion of humanoid robot. Control policies are first developed for simple template models like Linear Inverted Pendulum Model (LIPM) or Spring Loaded Inverted Pendulum(SLIP), the result controlled behaviors are then been mapped to the whole-body motion of humanoid robot through optimization-based task-space control strategies. Whole-body humanoid control framework has been verified on various contact situations such as unknown uneven terrain, multi-contact scenarios and moving platform and shows its generality and versatility. For walking motion, existing Model Predictive Control approach based on LIPM has been extended to enable the robot to walk without any reference foot placement anchoring. It is kind of discrete version of \u201cwalking without thinking\u201d. As a result, the robot could achieve versatile locomotion modes such as automatic foot placement with single reference velocity command, reactive stepping under large external disturbances, guided walking with small constant external pushing forces, robust walking on unknown uneven terrain, reactive stepping in place when blocked by external barrier. As an extension of this proposed framework, also to increase the push recovery capability of the humanoid robot, two new configurations have been proposed to enable the robot to perform cross-step motions. For more dynamic hopping and running motion, SLIP model has been chosen as the template model. Different from traditional model-based analytical approach, a data-driven approach has been proposed to encode the dynamics of the this model. A deep neural network is trained offline with a large amount of simulation data based on the SLIP model to learn its dynamics. The trained network is applied online to generate reference foot placements for the humanoid robot. Simulations have been performed to evaluate the effectiveness of the proposed approach in generating bio-inspired and robust running motions. The method proposed based on 2D SLIP model can be generalized to 3D SLIP model and the extension has been briefly mentioned at the end
    • …
    corecore