9 research outputs found

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Proceedings of ICMMB2014

    Get PDF

    Interpreting parametric-biomimicry design from cad Ń‚o bim software: digital modelling based on a sketch of nandi flame

    Get PDF
    This research represents an application of two digital modelling softwares, first digital modelling software, chosen as representative of Computer-Aided Design – CAD modelling tool was Fusion 360. The representative of Building Information Modelling (BIM) as second digital modelling software was ArchiCAD. The aim of the research was to translate the same parametric-biomimicry design methodology used in CAD process modelling into BIM environment. African species Spathodea campanulata P. Beauv, whose common name in Kenya is Nandi flame, has been selected for the purpose of this digital modelling processes. As one of the most spectacular flowering plants, Nandi flame is indigenous to the tropical dry forests in Kenya. The decorative flower of this species was the basic model, more precisely the botanical sketches of the flower. This sketches were implemented into digital modelling softwares and used for parametric modelling. The results of this processes were represented as urban models or installations (landscape-architectural elements) in open space. This approach of digitally generating conceptual solutions from nature elements has capability to boost the formulation of new creative inventions in the different fields. The unique geometric patterns found in the flower of Spathodea campanulata P. Beauv served as a good example of how we may transform these ideas into actual design installations– using CAD or BIM software tools. This research has been carried out with the aim to find the position of BIM tools in parametric biomimicry design

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Neural plasticity and the limits of scientific knowledge

    Get PDF
    Western science claims to provide unique, objective information about the world. This is supported by the observation that peoples across cultures will agree upon a common description of the physical world. Further, the use of scientific instruments and mathematics is claimed to enable the objectification of science. In this work, carried out by reviewing the scientific literature, the above claims are disputed systematically by evaluating the definition of physical reality and the scientific method, showing that empiricism relies ultimately upon the human senses for the evaluation of scientific theories and that measuring instruments cannot replace the human sensory system. Nativist and constructivist theories of human sensory development are reviewed, and it is shown that nativist claims of core conceptual knowledge cannot be supported by the findings in the literature, which shows that perception does not simply arise from a process of maturation. Instead, sensory function requires a long process of learning through interactions with the environment. To more rigorously define physical reality and systematically evaluate the stability of perception, and thus the basis of empiricism, the development of the method of dimension analysis is reviewed. It is shown that this methodology, relied upon for the mathematical analysis of physical quantities, is itself based upon empiricism, and that all of physical reality can be described in terms of the three fundamental dimensions of mass, length and time. Hereafter the sensory modalities that inform us about these three dimensions are systematically evaluated. The following careful analysis of neuronal plasticity in these modalities shows that all the relevant senses acquire from the environment the capacity to apprehend physical reality. It is concluded that physical reality is acquired rather than given innately, and leads to the position that science cannot provide unique results. Rather, those it can provide are sufficient for a particular environmental setting
    corecore