52 research outputs found

    Image enhancements for low-bitrate videocoding

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 71).by Brian C. Davison.M.Eng

    A learning-by-example method for reducing BDCT compression artifacts in high-contrast images.

    Get PDF
    Wang, Guangyu.Thesis submitted in: December 2003.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 70-75).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- BDCT Compression Artifacts --- p.1Chapter 1.2 --- Previous Artifact Removal Methods --- p.3Chapter 1.3 --- Our Method --- p.4Chapter 1.4 --- Structure of the Thesis --- p.4Chapter 2 --- Related Work --- p.6Chapter 2.1 --- Image Compression --- p.6Chapter 2.2 --- A Typical BDCT Compression: Baseline JPEG --- p.7Chapter 2.3 --- Existing Artifact Removal Methods --- p.10Chapter 2.3.1 --- Post-Filtering --- p.10Chapter 2.3.2 --- Projection onto Convex Sets --- p.12Chapter 2.3.3 --- Learning by Examples --- p.13Chapter 2.4 --- Other Related Work --- p.14Chapter 3 --- Contamination as Markov Random Field --- p.17Chapter 3.1 --- Markov Random Field --- p.17Chapter 3.2 --- Contamination as MRF --- p.18Chapter 4 --- Training Set Preparation --- p.22Chapter 4.1 --- Training Images Selection --- p.22Chapter 4.2 --- Bit Rate --- p.23Chapter 5 --- Artifact Vectors --- p.26Chapter 5.1 --- Formation of Artifact Vectors --- p.26Chapter 5.2 --- Luminance Remapping --- p.29Chapter 5.3 --- Dominant Implication --- p.29Chapter 6 --- Tree-Structured Vector Quantization --- p.32Chapter 6.1 --- Background --- p.32Chapter 6.1.1 --- Vector Quantization --- p.32Chapter 6.1.2 --- Tree-Structured Vector Quantization --- p.33Chapter 6.1.3 --- K-Means Clustering --- p.34Chapter 6.2 --- TSVQ in Artifact Removal --- p.35Chapter 7 --- Synthesis --- p.39Chapter 7.1 --- Color Processing --- p.39Chapter 7.2 --- Artifact Removal --- p.40Chapter 7.3 --- Selective Rejection of Synthesized Values --- p.42Chapter 8 --- Experimental Results --- p.48Chapter 8.1 --- Image Quality Assessments --- p.48Chapter 8.1.1 --- Peak Signal-Noise Ratio --- p.48Chapter 8.1.2 --- Mean Structural SIMilarity --- p.49Chapter 8.2 --- Performance --- p.50Chapter 8.3 --- How Size of Training Set Affects the Performance --- p.52Chapter 8.4 --- How Bit Rates Affect the Performance --- p.54Chapter 8.5 --- Comparisons --- p.56Chapter 9 --- Conclusion --- p.61Chapter A --- Color Transformation --- p.63Chapter B --- Image Quality --- p.64Chapter B.1 --- Image Quality vs. Quantization Table --- p.64Chapter B.2 --- Image Quality vs. Bit Rate --- p.66Chapter C --- Arti User's Manual --- p.68Bibliography --- p.7

    A Unified Approach to Restoration, Deinterlacing and Resolution Enhancement in Decoding MPEG-2 Video

    Get PDF

    Reduction of blocking artifacts using side information

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 95-96).Block-based image and video coding systems are used extensively in practice. In low bit-rate applications, however, they suffer from annoying discontinuities, called blocking artifacts. Prior research shows that incorporating systems that reduce blocking artifacts into codecs is useful because visual quality is improved. Existing methods reduce blocking artifacts by applying various post-processing techniques to the compressed image. Such methods require neither any modification to current encoders nor an increase in the bit-rate. This thesis examines a framework where blocking artifacts are reduced using side information transmitted from the encoder to the decoder. Using side information enables the use of the original image in deblocking, which improves performance. Furthermore, the computational burden at the decoder is reduced. The principal question that arises is whether the gains in performance of this choice can compensate for the increase in the bit-rate due to the transmission of side information. Experiments are carried out to answer this question with the following sample system: The encoder determines block boundaries that exhibit blocking artifacts as well as filters (from a predefined set of filters) that best deblock these block boundaries.(cont.) Then it transmits side information that conveys the determined block boundaries together with their selected filters to the decoder. The decoder uses the received side information to perform deblocking. The proposed sample system is compared against an ordinary coding system and a post-processing type deblocking system with the bit-rate of these systems being equal to the overall bit-rate (regular encoding bits + side information bits) of the proposed system. The results of the comparisons indicate that, both for images and video sequences, the proposed system can perform better in terms of both visual quality and PSNR for some range of coding bit-rates.by Fatih Kamisli.S.M

    Motion compensated interpolation for subband coding of moving images

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 108-119).by Mark Daniel Polomski.M.S

    Video enhancement : content classification and model selection

    Get PDF
    The purpose of video enhancement is to improve the subjective picture quality. The field of video enhancement includes a broad category of research topics, such as removing noise in the video, highlighting some specified features and improving the appearance or visibility of the video content. The common difficulty in this field is how to make images or videos more beautiful, or subjectively better. Traditional approaches involve lots of iterations between subjective assessment experiments and redesigns of algorithm improvements, which are very time consuming. Researchers have attempted to design a video quality metric to replace the subjective assessment, but so far it is not successful. As a way to avoid heuristics in the enhancement algorithm design, least mean square methods have received considerable attention. They can optimize filter coefficients automatically by minimizing the difference between processed videos and desired versions through a training. However, these methods are only optimal on average but not locally. To solve the problem, one can apply the least mean square optimization for individual categories that are classified by local image content. The most interesting example is Kondo’s concept of local content adaptivity for image interpolation, which we found could be generalized into an ideal framework for content adaptive video processing. We identify two parts in the concept, content classification and adaptive processing. By exploring new classifiers for the content classification and new models for the adaptive processing, we have generalized a framework for more enhancement applications. For the part of content classification, new classifiers have been proposed to classify different image degradations such as coding artifacts and focal blur. For the coding artifact, a novel classifier has been proposed based on the combination of local structure and contrast, which does not require coding block grid detection. For the focal blur, we have proposed a novel local blur estimation method based on edges, which does not require edge orientation detection and shows more robust blur estimation. With these classifiers, the proposed framework has been extended to coding artifact robust enhancement and blur dependant enhancement. With the content adaptivity to more image features, the number of content classes can increase significantly. We show that it is possible to reduce the number of classes without sacrificing much performance. For the part of model selection, we have introduced several nonlinear filters to the proposed framework. We have also proposed a new type of nonlinear filter, trained bilateral filter, which combines both advantages of the original bilateral filter and the least mean square optimization. With these nonlinear filters, the proposed framework show better performance than with linear filters. Furthermore, we have shown a proof-of-concept for a trained approach to obtain contrast enhancement by a supervised learning. The transfer curves are optimized based on the classification of global or local image content. It showed that it is possible to obtain the desired effect by learning from other computationally expensive enhancement algorithms or expert-tuned examples through the trained approach. Looking back, the thesis reveals a single versatile framework for video enhancement applications. It widens the application scope by including new content classifiers and new processing models and offers scalabilities with solutions to reduce the number of classes, which can greatly accelerate the algorithm design

    Evaluation of the color image and video processing chain and visual quality management for consumer systems

    Get PDF
    With the advent of novel digital display technologies, color processing is increasingly becoming a key aspect in consumer video applications. Today’s state-of-the-art displays require sophisticated color and image reproduction techniques in order to achieve larger screen size, higher luminance and higher resolution than ever before. However, from color science perspective, there are clearly opportunities for improvement in the color reproduction capabilities of various emerging and conventional display technologies. This research seeks to identify potential areas for improvement in color processing in a video processing chain. As part of this research, various processes involved in a typical video processing chain in consumer video applications were reviewed. Several published color and contrast enhancement algorithms were evaluated, and a novel algorithm was developed to enhance color and contrast in images and videos in an effective and coordinated manner. Further, a psychophysical technique was developed and implemented for performing visual evaluation of color image and consumer video quality. Based on the performance analysis and visual experiments involving various algorithms, guidelines were proposed for the development of an effective color and contrast enhancement method for images and video applications. It is hoped that the knowledge gained from this research will help build a better understanding of color processing and color quality management methods in consumer video
    • …
    corecore