32 research outputs found

    A second look at the toric h-polynomial of a cubical complex

    Full text link
    We provide an explicit formula for the toric hh-contribution of each cubical shelling component, and a new combinatorial model to prove Clara Chan's result on the non-negativity of these contributions. Our model allows for a variant of the Gessel-Shapiro result on the gg-polynomial of the cubical lattice, this variant may be shown by simple inclusion-exclusion. We establish an isomorphism between our model and Chan's model and provide a reinterpretation in terms of noncrossing partitions. By discovering another variant of the Gessel-Shapiro result in the work of Denise and Simion, we find evidence that the toric hh-polynomials of cubes are related to the Morgan-Voyce polynomials via Viennot's combinatorial theory of orthogonal polynomials.Comment: Minor correction

    Tree expansions of some Lie idempotents}

    Full text link
    We prove that the Catalan Lie idempotent Dn(a,b)D_n(a,b), introduced in [Menous {\it et al.}, Adv. Appl. Math. 51 (2013), 177] can be refined by introducing nn independent parameters a0,…,an−1a_0,\ldots,a_{n-1} and that the coefficient of each monomial is itself a Lie idempotent in the descent algebra. These new idempotents are multiplicity-free sums of subsets of the Poincar\'e-Birkhoff-Witt basis of the Lie module. These results are obtained by embedding noncommutative symmetric functions into the dual noncommutative Connes-Kreimer algebra, which also allows us to interpret, and rederive in a simpler way, Chapoton's results on a two-parameter tree expanded series.Comment: 27 page

    Functional programming and graph algorithms

    Get PDF
    This thesis is an investigation of graph algorithms in the non-strict purely functional language Haskell. Emphasis is placed on the importance of achieving an asymptotic complexity as good as with conventional languages. This is achieved by using the monadic model for including actions on the state. Work on the monadic model was carried out at Glasgow University by Wadler, Peyton Jones, and Launchbury in the early nineties and has opened up many diverse application areas. One area is the ability to express data structures that require sharing. Although graphs are not presented in this style, data structures that graph algorithms use are expressed in this style. Several examples of stateful algorithms are given including union/find for disjoint sets, and the linear time sort binsort. The graph algorithms presented are not new, but are traditional algorithms recast in a functional setting. Examples include strongly connected components, biconnected components, Kruskal's minimum cost spanning tree, and Dijkstra's shortest paths. The presentation is lucid giving more insight than usual. The functional setting allows for complete calculational style correctness proofs - which is demonstrated with many examples. The benefits of using a functional language for expressing graph algorithms are quantified by looking at the issues of execution times, asymptotic complexity, correctness, and clarity, in comparison with traditional approaches. The intention is to be as objective as possible, pointing out both the weaknesses and the strengths of using a functional language

    The number of intervals in the m-Tamari lattices

    Full text link
    An m-ballot path of size n is a path on the square grid consisting of north and east steps, starting at (0,0), ending at (mn,n), and never going below the line {x=my}. The set of these paths can be equipped with a lattice structure, called the m-Tamari lattice, which generalizes the usual Tamari lattice obtained when m=1. We prove that the number of intervals in this lattice is m+1n(mn+1)((m+1)2n+mn−1). \frac {m+1}{n(mn+1)} {(m+1)^2 n+m\choose n-1}. This formula was recently conjectured by Bergeron in connection with the study of coinvariant spaces. The case m=1 was proved a few years ago by Chapoton. Our proof is based on a recursive description of intervals, which translates into a functional equation satisfied by the associated generating function. The solution of this equation is an algebraic series, obtained by a guess-and-check approach. Finding a bijective proof remains an open problem.Comment: 19 page
    corecore