912 research outputs found

    A Posteriori Probabilistic Bounds of Convex Scenario Programs with Validation Tests

    Full text link
    Scenario programs have established themselves as efficient tools towards decision-making under uncertainty. To assess the quality of scenario-based solutions a posteriori, validation tests based on Bernoulli trials have been widely adopted in practice. However, to reach a theoretically reliable judgement of risk, one typically needs to collect massive validation samples. In this work, we propose new a posteriori bounds for convex scenario programs with validation tests, which are dependent on both realizations of support constraints and performance on out-of-sample validation data. The proposed bounds enjoy wide generality in that many existing theoretical results can be incorporated as particular cases. To facilitate practical use, a systematic approach for parameterizing a posteriori probability bounds is also developed, which is shown to possess a variety of desirable properties allowing for easy implementations and clear interpretations. By synthesizing comprehensive information about support constraints and validation tests, improved risk evaluation can be achieved for randomized solutions in comparison with existing a posteriori bounds. Case studies on controller design of aircraft lateral motion are presented to validate the effectiveness of the proposed a posteriori bounds

    Energy management of a building cooling system with thermal storage: A randomized solution with feedforward disturbance compensation

    Get PDF
    We consider a cooling system that comprises a building composed of multiple thermally conditioned zones, a chiller plant, and a thermal storage unit. The electrical energy price is time-varying, and the goal is to minimize the electrical energy cost along some look-ahead time horizon while guaranteeing an appropriate level of comfort for the occupants of the building. To this purpose, we can appropriately set the temperatures profiles in the zones of the building and the cooling energy exchange with the storage. Since the cooling system is affected by stochastic disturbances, we adopt a stochastic formulation of the control problem, where constraints are imposed in probability and measurable disturbances are possibly compensated. The resulting chance-constrained optimization problem is then solved via a randomized approach. Numerical results show a significant reduction of the cost when the feedforward disturbance compensation scheme is adopted

    Learning for Robust Optimization

    Full text link
    We propose a data-driven technique to automatically learn the uncertainty sets in robust optimization. Our method reshapes the uncertainty sets by minimizing the expected performance across a family of problems while guaranteeing constraint satisfaction. We learn the uncertainty sets using a novel stochastic augmented Lagrangian method that relies on differentiating the solutions of the robust optimization problems with respect to the parameters of the uncertainty set. We show sublinear convergence to stationary points under mild assumptions, and finite-sample probabilistic guarantees of constraint satisfaction using empirical process theory. Our approach is very flexible and can learn a wide variety of uncertainty sets while preserving tractability. Numerical experiments show that our method outperforms traditional approaches in robust and distributionally robust optimization in terms of out of sample performance and constraint satisfaction guarantees. We implemented our method in the open-source package LROPT

    Agnostic Bayes

    Get PDF
    Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015L’apprentissage automatique correspond à la science de l’apprentissage à partir d’exemples. Des algorithmes basés sur cette approche sont aujourd’hui omniprésents. Bien qu’il y ait eu un progrès significatif, ce domaine présente des défis importants. Par exemple, simplement sélectionner la fonction qui correspond le mieux aux données observées n’offre aucune garantie statistiques sur les exemples qui n’ont pas encore été observées. Quelques théories sur l’apprentissage automatique offrent des façons d’aborder ce problème. Parmi ceux-ci, nous présentons la modélisation bayésienne de l’apprentissage automatique et l’approche PACbayésienne pour l’apprentissage automatique dans une vue unifiée pour mettre en évidence d’importantes similarités. Le résultat de cette analyse suggère que de considérer les réponses de l’ensemble des modèles plutôt qu’un seul correspond à un des éléments-clés pour obtenir une bonne performance de généralisation. Malheureusement, cette approche vient avec un coût de calcul élevé, et trouver de bonnes approximations est un sujet de recherche actif. Dans cette thèse, nous présentons une approche novatrice qui peut être appliquée avec un faible coût de calcul sur un large éventail de configurations d’apprentissage automatique. Pour atteindre cet objectif, nous appliquons la théorie de Bayes d’une manière différente de ce qui est conventionnellement fait pour l’apprentissage automatique. Spécifiquement, au lieu de chercher le vrai modèle à l’origine des données observées, nous cherchons le meilleur modèle selon une métrique donnée. Même si cette différence semble subtile, dans cette approche, nous ne faisons pas la supposition que le vrai modèle appartient à l’ensemble de modèles explorés. Par conséquent, nous disons que nous sommes agnostiques. Plusieurs expérimentations montrent un gain de généralisation significatif en utilisant cette approche d’ensemble de modèles durant la phase de validation croisée. De plus, cet algorithme est simple à programmer et n’ajoute pas un coût de calcul significatif à la recherche d’hyperparamètres conventionnels. Finalement, cet outil probabiliste peut également être utilisé comme un test statistique pour évaluer la qualité des algorithmes sur plusieurs ensembles de données d’apprentissage.Machine learning is the science of learning from examples. Algorithms based on this approach are now ubiquitous. While there has been significant progress, this field presents important challenges. Namely, simply selecting the function that best fits the observed data was shown to have no statistical guarantee on the examples that have not yet been observed. There are a few learning theories that suggest how to address this problem. Among these, we present the Bayesian modeling of machine learning and the PAC-Bayesian approach to machine learning in a unified view to highlight important similarities. The outcome of this analysis suggests that model averaging is one of the key elements to obtain a good generalization performance. Specifically, one should perform predictions based on the outcome of every model instead of simply the one that best fits the observed data. Unfortunately, this approach comes with a high computational cost problem, and finding good approximations is the subject of active research. In this thesis, we present an innovative approach that can be applied with a low computational cost on a wide range of machine learning setups. In order to achieve this, we apply the Bayes’ theory in a different way than what is conventionally done for machine learning. Specifically, instead of searching for the true model at the origin of the observed data, we search for the best model according to a given metric. While the difference seems subtle, in this approach, we do not assume that the true model belongs to the set of explored model. Hence, we say that we are agnostic. An extensive experimental setup shows a significant generalization performance gain when using this model averaging approach during the cross-validation phase. Moreover, this simple algorithm does not add a significant computational cost to the conventional search of hyperparameters. Finally, this probabilistic tool can also be used as a statistical significance test to evaluate the quality of learning algorithms on multiple datasets

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Probabilistic Models of Motor Production

    Get PDF
    N. Bernstein defined the ability of the central neural system (CNS) to control many degrees of freedom of a physical body with all its redundancy and flexibility as the main problem in motor control. He pointed at that man-made mechanisms usually have one, sometimes two degrees of freedom (DOF); when the number of DOF increases further, it becomes prohibitively hard to control them. The brain, however, seems to perform such control effortlessly. He suggested the way the brain might deal with it: when a motor skill is being acquired, the brain artificially limits the degrees of freedoms, leaving only one or two. As the skill level increases, the brain gradually "frees" the previously fixed DOF, applying control when needed and in directions which have to be corrected, eventually arriving to the control scheme where all the DOF are "free". This approach of reducing the dimensionality of motor control remains relevant even today. One the possibles solutions of the Bernstetin's problem is the hypothesis of motor primitives (MPs) - small building blocks that constitute complex movements and facilitite motor learnirng and task completion. Just like in the visual system, having a homogenious hierarchical architecture built of similar computational elements may be beneficial. Studying such a complicated object as brain, it is important to define at which level of details one works and which questions one aims to answer. David Marr suggested three levels of analysis: 1. computational, analysing which problem the system solves; 2. algorithmic, questioning which representation the system uses and which computations it performs; 3. implementational, finding how such computations are performed by neurons in the brain. In this thesis we stay at the first two levels, seeking for the basic representation of motor output. In this work we present a new model of motor primitives that comprises multiple interacting latent dynamical systems, and give it a full Bayesian treatment. Modelling within the Bayesian framework, in my opinion, must become the new standard in hypothesis testing in neuroscience. Only the Bayesian framework gives us guarantees when dealing with the inevitable plethora of hidden variables and uncertainty. The special type of coupling of dynamical systems we proposed, based on the Product of Experts, has many natural interpretations in the Bayesian framework. If the dynamical systems run in parallel, it yields Bayesian cue integration. If they are organized hierarchically due to serial coupling, we get hierarchical priors over the dynamics. If one of the dynamical systems represents sensory state, we arrive to the sensory-motor primitives. The compact representation that follows from the variational treatment allows learning of a motor primitives library. Learned separately, combined motion can be represented as a matrix of coupling values. We performed a set of experiments to compare different models of motor primitives. In a series of 2-alternative forced choice (2AFC) experiments participants were discriminating natural and synthesised movements, thus running a graphics Turing test. When available, Bayesian model score predicted the naturalness of the perceived movements. For simple movements, like walking, Bayesian model comparison and psychophysics tests indicate that one dynamical system is sufficient to describe the data. For more complex movements, like walking and waving, motion can be better represented as a set of coupled dynamical systems. We also experimentally confirmed that Bayesian treatment of model learning on motion data is superior to the simple point estimate of latent parameters. Experiments with non-periodic movements show that they do not benefit from more complex latent dynamics, despite having high kinematic complexity. By having a fully Bayesian models, we could quantitatively disentangle the influence of motion dynamics and pose on the perception of naturalness. We confirmed that rich and correct dynamics is more important than the kinematic representation. There are numerous further directions of research. In the models we devised, for multiple parts, even though the latent dynamics was factorized on a set of interacting systems, the kinematic parts were completely independent. Thus, interaction between the kinematic parts could be mediated only by the latent dynamics interactions. A more flexible model would allow a dense interaction on the kinematic level too. Another important problem relates to the representation of time in Markov chains. Discrete time Markov chains form an approximation to continuous dynamics. As time step is assumed to be fixed, we face with the problem of time step selection. Time is also not a explicit parameter in Markov chains. This also prohibits explicit optimization of time as parameter and reasoning (inference) about it. For example, in optimal control boundary conditions are usually set at exact time points, which is not an ecological scenario, where time is usually a parameter of optimization. Making time an explicit parameter in dynamics may alleviate this

    Control of HVAC Systems via Scenario-based Explicit MPC

    Get PDF
    Improving energy efficiency of Heating, Ventilation and Air Conditioning (HVAC) systems is a primary objective for the society. Model Predictive Control (MPC) techniques for HVAC systems have recently received particular attention, since they can naturally account for several factors, such as weather and occupancy forecasts, comfort ranges and actuation constraints. Developing effective MPC based control strategies for HVAC systems is nontrivial, since buildings dynamics are nonlinear and affected by various uncertainties. Further, the complexity of the MPC problem and the burden of on-line computations can lead to difficulties in integrating this scheme into a building management system. We propose to address this computational issue by designing a scenario-based explicit MPC strategy, i.e., a controller that is simultaneously based on explicit representations of the MPC feedback law and accounts for uncertainties in the occupancy patterns and weather conditions by using the scenarios paradigm. The main advantages of this approach are the absence of a-priori assumptions on the distributions of the uncertain variables, the applicability to any type of building, and the limited on-line computational burden, enabling practical implementations on low-cost hardware platforms. We illustrate the practical implementation of the proposed explicit MPC controller on a room of a university building, showing its effectiveness and computational tractability
    • …
    corecore