6,075 research outputs found

    Posterior Matching Scheme for Gaussian Multiple Access Channel with Feedback

    Full text link
    Posterior matching is a method proposed by Ofer Shayevitz and Meir Feder to design capacity achieving coding schemes for general point-to-point memoryless channels with feedback. In this paper, we present a way to extend posterior matching based encoding and variable rate decoding ideas for the Gaussian MAC with feedback, referred to as time-varying posterior matching scheme, analyze the achievable rate region and error probabilities of the extended encoding-decoding scheme. The time-varying posterior matching scheme is a generalization of the Shayevitz and Feder's posterior matching scheme when the posterior distributions of the input messages given output are not fixed over transmission time slots. It turns out that the well-known Ozarow's encoding scheme, which obtains the capacity of two-user Gaussian channel, is a special case of our extended posterior matching framework as the Schalkwijk-Kailath's scheme is a special case of the point-to-point posterior matching mentioned above. Furthermore, our designed posterior matching also obtains the linear-feedback sum-capacity for the symmetric multiuser Gaussian MAC. Besides, the encoding scheme in this paper is designed for the real Gaussian MAC to obtain that performance, which is different from previous approaches where encoding schemes are designed for the complex Gaussian MAC. More importantly, this paper shows potential of posterior matching in designing optimal coding schemes for multiuser channels with feedback.Comment: submitted to the IEEE Transactions on Information Theory. A shorter version has been accepted to IEEE Information Theory Workshop 201

    On the Capacity of Symmetric Gaussian Interference Channels with Feedback

    Full text link
    In this paper, we propose a new coding scheme for symmetric Gaussian interference channels with feedback based on the ideas of time-varying coding schemes. The proposed scheme improves the Suh-Tse and Kramer inner bounds of the channel capacity for the cases of weak and not very strong interference. This improvement is more significant when the signal-to-noise ratio (SNR) is not very high. It is shown theoretically and numerically that our coding scheme can outperform the Kramer code. In addition, the generalized degrees-of-freedom of our proposed coding scheme is equal to the Suh-Tse scheme in the strong interference case. The numerical results show that our coding scheme can attain better performance than the Suh-Tse coding scheme for all channel parameters. Furthermore, the simplicity of the encoding/decoding algorithms is another strong point of our proposed coding scheme compared with the Suh-Tse coding scheme. More importantly, our results show that an optimal coding scheme for the symmetric Gaussian interference channels with feedback can be achieved by using only marginal posterior distributions under a better cooperation strategy between transmitters.Comment: To appear in Proc. of IEEE International Symposium on Information Theory (ISIT), Hong Kong, June 14-19, 201

    Novel reduced-state BCJR algorithms

    Get PDF

    Control-theoretic Approach to Communication with Feedback: Fundamental Limits and Code Design

    Full text link
    Feedback communication is studied from a control-theoretic perspective, mapping the communication problem to a control problem in which the control signal is received through the same noisy channel as in the communication problem, and the (nonlinear and time-varying) dynamics of the system determine a subclass of encoders available at the transmitter. The MMSE capacity is defined to be the supremum exponential decay rate of the mean square decoding error. This is upper bounded by the information-theoretic feedback capacity, which is the supremum of the achievable rates. A sufficient condition is provided under which the upper bound holds with equality. For the special class of stationary Gaussian channels, a simple application of Bode's integral formula shows that the feedback capacity, recently characterized by Kim, is equal to the maximum instability that can be tolerated by the controller under a given power constraint. Finally, the control mapping is generalized to the N-sender AWGN multiple access channel. It is shown that Kramer's code for this channel, which is known to be sum rate optimal in the class of generalized linear feedback codes, can be obtained by solving a linear quadratic Gaussian control problem.Comment: Submitted to IEEE Transactions on Automatic Contro

    A Universal Receiver for Uplink NOMA Systems

    Full text link
    Given its capability in efficient radio resource sharing, non-orthogonal multiple access (NOMA) has been identified as a promising technology in 5G to improve the system capacity, user connectivity, and scheduling latency. A dozen of uplink NOMA schemes have been proposed recently and this paper considers the design of a universal receiver suitable for all potential designs of NOMA schemes. Firstly, a general turbo-like iterative receiver structure is introduced, under which, a universal expectation propagation algorithm (EPA) detector with hybrid parallel interference cancellation (PIC) is proposed (EPA in short). Link-level simulations show that the proposed EPA receiver can achieve superior block error rate (BLER) performance with implementation friendly complexity and fast convergence, and is always better than the traditional codeword level MMSE-PIC receiver for various kinds of NOMA schemes.Comment: This paper has been accepted by IEEE/CIC International Conference on Communications in China (ICCC 2018). 5 pages, 4 figure

    Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    Get PDF
    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.Comment: 14 pages, 6 figures, submitted to IEEE JSTSP Special Issue on Machine Learning for Cognition in Radio Communications and Rada
    corecore