214 research outputs found

    Planetary Science Informatics and Data Analytics Conference : April 24–26, 2018, St. Louis, Missouri

    Get PDF
    The PSIDA conference provides a forum to discuss approaches, challenges, and applications of informatics and data analytics technologies and capabilities in planetary science.Institutional Support NASA Planetary Data System Geosciences, Lunar and Planetary Institute.Chairs Tom Stein, Washington University, St. Louis, USA, Dan Crichton, Jet Propulsion Laboratory, Pasadena, USA ; Program Committee Alphan Altinok, Jet Propulsion Laboratory, Pasadena, USA … [and 8 others]PARTIAL CONTENTS: ESA Planetary Science Archive Architecture and Data Management--SPICE for ESA Planetary Missions--VESPA: Enlarging the Virtual Observatory to Planetary Science--SeaBIRD: A Flexible and Intuitive Planetary Datamining Infrastructure--Model-Driven Development for PDS4 Software and Services--The Need for a Planetary Spatial Data Clearinghouse--The Relationship Between Planetary Spatial Data Infrastructure and the Planetary Data System--Update on the NASA-USGS Planetary Spatial Data Infrastructure Inter-Agency Agreement--MoonDB - A Data System for Analytical Data of Lunar Samples--Large-Scale Numerical Simulations of Planetary Interiors--Scalable Data Processing with the LROC Processing Pipelines--PACKMAN-Net: A Distributed, Open-Access, and Scalable Network of User-Friendly Space Weather Stations

    SPICA:revealing the hearts of galaxies and forming planetary systems : approach and US contributions

    Get PDF
    How did the diversity of galaxies we see in the modern Universe come to be? When and where did stars within them forge the heavy elements that give rise to the complex chemistry of life? How do planetary systems, the Universe's home for life, emerge from interstellar material? Answering these questions requires techniques that penetrate dust to reveal the detailed contents and processes in obscured regions. The ESA-JAXA Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is designed for this, with a focus on sensitive spectroscopy in the 12 to 230 micron range. SPICA offers massive sensitivity improvements with its 2.5-meter primary mirror actively cooled to below 8 K. SPICA one of 3 candidates for the ESA's Cosmic Visions M5 mission, and JAXA has is committed to their portion of the collaboration. ESA will provide the silicon-carbide telescope, science instrument assembly, satellite integration and testing, and the spacecraft bus. JAXA will provide the passive and active cooling system (supporting the

    The Apertif Surveys:The First Six Months

    Get PDF
    Apertif is a new phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), greatly increasing its field of view and turning it into a natural survey instrument. In July 2019, the Apertif legacy surveys commenced; these are a time-domain survey and a two-tiered imaging survey, with a shallow and medium-deep component. The time-domain survey searches for new (millisecond) pulsars and fast radio bursts (FRBs). The imaging surveys provide neutral hydrogen (HI), radio continuum and polarization data products. With a bandwidth of 300 MHz, Apertif can detect HI out to a redshift of 0.26. The key science goals to be accomplished by Apertif include localization of FRBs (including real-time public alerts), the role of environment and interaction on galaxy properties and gas removal, finding the smallest galaxies, connecting cold gas to AGN, understanding the faint radio population, and studying magnetic fields in galaxies. After a proprietary period, survey data products will be publicly available through the Apertif Long Term Archive (ALTA, https://alta.astron.nl). I will review the progress of the surveys and present the first results from the Apertif surveys, including highlighting the currently available public data

    Data Analytics and Machine Learning to Enhance the Operational Visibility and Situation Awareness of Smart Grid High Penetration Photovoltaic Systems

    Get PDF
    Electric utilities have limited operational visibility and situation awareness over grid-tied distributed photovoltaic systems (PV). This will pose a risk to grid stability when the PV penetration into a given feeder exceeds 60% of its peak or minimum daytime load. Third-party service providers offer only real-time monitoring but not accurate insights into system performance and prediction of productions. PV systems also increase the attack surface of distribution networks since they are not under the direct supervision and control of the utility security analysts. Six key objectives were successfully achieved to enhance PV operational visibility and situation awareness: (1) conceptual cybersecurity frameworks for PV situation awareness at device, communications, applications, and cognitive levels; (2) a unique combinatorial approach using LASSO-Elastic Net regularizations and multilayer perceptron for PV generation forecasting; (3) applying a fixed-point primal dual log-barrier interior point method to expedite AC optimal power flow convergence; (4) adapting big data standards and capability maturity models to PV systems; (5) using K-nearest neighbors and random forests to impute missing values in PV big data; and (6) a hybrid data-model method that takes PV system deration factors and historical data to estimate generation and evaluate system performance using advanced metrics. These objectives were validated on three real-world case studies comprising grid-tied commercial PV systems. The results and conclusions show that the proposed imputation approach improved the accuracy by 91%, the estimation method performed better by 75% and 10% for two PV systems, and the use of the proposed forecasting model improved the generalization performance and reduced the likelihood of overfitting. The application of primal dual log-barrier interior point method improved the convergence of AC optimal power flow by 0.7 and 0.6 times that of the currently used deterministic models. Through the use of advanced performance metrics, it is shown how PV systems of different nameplate capacities installed at different geographical locations can be directly evaluated and compared over both instantaneous as well as extended periods of time. The results of this dissertation will be of particular use to multiple stakeholders of the PV domain including, but not limited to, the utility network and security operation centers, standards working groups, utility equipment, and service providers, data consultants, system integrator, regulators and public service commissions, government bodies, and end-consumers

    61st Annual Rocky Mountain Conference on Magnetic Resonance

    Get PDF
    Final program, abstracts, and information about the 61st annual meeting of the Rocky Mountain Conference on Magnetic Resonance, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Copper Mountain, Colorado, July 25-29, 2022

    Annual Meeting of the Lunar Exploration Analysis Group : November 1-3, 2016, Columbia, Maryland

    Get PDF
    The meeting goals are three-fold: 1. Integrate the perspectives and interests of the different stakeholders (science, engineering, government, and private sector) to explore common goals of lunar exploration. 2. Use the results of recent and ongoing missions to examine how science enables exploration and exploration enables science. 3. Provide a forum for community updates and input into the issues that affect lunar science and exploration.NASA Lunar Exploration Analysis Group (LEAG) Lunar and Planetary Institute (LPI) Universities Space Research Association (USRA) National Aeronautics and Space Administration (NASA) NASA Solar System Exploration Research Virtual Institute (SSERVI)Organizing Committee, Clive Neal, Convener, University of Notre Dame, Stephen Mackwell, Convener, Universities Space Research Associatio
    • …
    corecore