6,276 research outputs found

    Dividing the Ontology Alignment Task with Semantic Embeddings and Logic-based Modules

    Get PDF
    Large ontologies still pose serious challenges to state-of-the-art ontology alignment systems. In this paper we present an approach that combines a neural embedding model and logic-based modules to accurately divide an input ontology matching task into smaller and more tractable matching (sub)tasks. We have conducted a comprehensive evaluation using the datasets of the Ontology Alignment Evaluation Initiative. The results are encouraging and suggest that the proposed method is adequate in practice and can be integrated within the workflow of systems unable to cope with very large ontologies

    ALT-C 2010 - Conference Introduction and Abstracts

    Get PDF

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Integration of Data Mining into Scientific Data Analysis Processes

    Get PDF
    In recent years, using advanced semi-interactive data analysis algorithms such as those from the field of data mining gained more and more importance in life science in general and in particular in bioinformatics, genetics, medicine and biodiversity. Today, there is a trend away from collecting and evaluating data in the context of a specific problem or study only towards extensively collecting data from different sources in repositories which is potentially useful for subsequent analysis, e.g. in the Gene Expression Omnibus (GEO) repository of high throughput gene expression data. At the time the data are collected, it is analysed in a specific context which influences the experimental design. However, the type of analyses that the data will be used for after they have been deposited is not known. Content and data format are focused only to the first experiment, but not to the future re-use. Thus, complex process chains are needed for the analysis of the data. Such process chains need to be supported by the environments that are used to setup analysis solutions. Building specialized software for each individual problem is not a solution, as this effort can only be carried out for huge projects running for several years. Hence, data mining functionality was developed to toolkits, which provide data mining functionality in form of a collection of different components. Depending on the different research questions of the users, the solutions consist of distinct compositions of these components. Today, existing solutions for data mining processes comprise different components that represent different steps in the analysis process. There exist graphical or script-based toolkits for combining such components. The data mining tools, which can serve as components in analysis processes, are based on single computer environments, local data sources and single users. However, analysis scenarios in medical- and bioinformatics have to deal with multi computer environments, distributed data sources and multiple users that have to cooperate. Users need support for integrating data mining into analysis processes in the context of such scenarios, which lacks today. Typically, analysts working with single computer environments face the problem of large data volumes since tools do not address scalability and access to distributed data sources. Distributed environments such as grid environments provide scalability and access to distributed data sources, but the integration of existing components into such environments is complex. In addition, new components often cannot be directly developed in distributed environments. Moreover, in scenarios involving multiple computers, multiple distributed data sources and multiple users, the reuse of components, scripts and analysis processes becomes more important as more steps and configuration are necessary and thus much bigger efforts are needed to develop and set-up a solution. In this thesis we will introduce an approach for supporting interactive and distributed data mining for multiple users based on infrastructure principles that allow building on data mining components and processes that are already available instead of designing of a completely new infrastructure, so that users can keep working with their well-known tools. In order to achieve the integration of data mining into scientific data analysis processes, this thesis proposes an stepwise approach of supporting the user in the development of analysis solutions that include data mining. We see our major contributions as the following: first, we propose an approach to integrate data mining components being developed for a single processor environment into grid environments. By this, we support users in reusing standard data mining components with small effort. The approach is based on a metadata schema definition which is used to grid-enable existing data mining components. Second, we describe an approach for interactively developing data mining scripts in grid environments. The approach efficiently supports users when it is necessary to enhance available components, to develop new data mining components, and to compose these components. Third, building on that, an approach for facilitating the reuse of existing data mining processes based on process patterns is presented. It supports users in scenarios that cover different steps of the data mining process including several components or scripts. The data mining process patterns support the description of data mining processes at different levels of abstraction between the CRISP model as most general and executable workflows as most concrete representation

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Application of Semantics to Solve Problems in Life Sciences

    Get PDF
    Fecha de lectura de Tesis: 10 de diciembre de 2018La cantidad de información que se genera en la Web se ha incrementado en los últimos años. La mayor parte de esta información se encuentra accesible en texto, siendo el ser humano el principal usuario de la Web. Sin embargo, a pesar de todos los avances producidos en el área del procesamiento del lenguaje natural, los ordenadores tienen problemas para procesar esta información textual. En este cotexto, existen dominios de aplicación en los que se están publicando grandes cantidades de información disponible como datos estructurados como en el área de las Ciencias de la Vida. El análisis de estos datos es de vital importancia no sólo para el avance de la ciencia, sino para producir avances en el ámbito de la salud. Sin embargo, estos datos están localizados en diferentes repositorios y almacenados en diferentes formatos que hacen difícil su integración. En este contexto, el paradigma de los Datos Vinculados como una tecnología que incluye la aplicación de algunos estándares propuestos por la comunidad W3C tales como HTTP URIs, los estándares RDF y OWL. Haciendo uso de esta tecnología, se ha desarrollado esta tesis doctoral basada en cubrir los siguientes objetivos principales: 1) promover el uso de los datos vinculados por parte de la comunidad de usuarios del ámbito de las Ciencias de la Vida 2) facilitar el diseño de consultas SPARQL mediante el descubrimiento del modelo subyacente en los repositorios RDF 3) crear un entorno colaborativo que facilite el consumo de Datos Vinculados por usuarios finales, 4) desarrollar un algoritmo que, de forma automática, permita descubrir el modelo semántico en OWL de un repositorio RDF, 5) desarrollar una representación en OWL de ICD-10-CM llamada Dione que ofrezca una metodología automática para la clasificación de enfermedades de pacientes y su posterior validación haciendo uso de un razonador OWL

    Semantically linking molecular entities in literature through entity relationships

    Get PDF
    Background Text mining tools have gained popularity to process the vast amount of available research articles in the biomedical literature. It is crucial that such tools extract information with a sufficient level of detail to be applicable in real life scenarios. Studies of mining non-causal molecular relations attribute to this goal by formally identifying the relations between genes, promoters, complexes and various other molecular entities found in text. More importantly, these studies help to enhance integration of text mining results with database facts. Results We describe, compare and evaluate two frameworks developed for the prediction of non-causal or 'entity' relations (REL) between gene symbols and domain terms. For the corresponding REL challenge of the BioNLP Shared Task of 2011, these systems ranked first (57.7% F-score) and second (41.6% F-score). In this paper, we investigate the performance discrepancy of 16 percentage points by benchmarking on a related and more extensive dataset, analysing the contribution of both the term detection and relation extraction modules. We further construct a hybrid system combining the two frameworks and experiment with intersection and union combinations, achieving respectively high-precision and high-recall results. Finally, we highlight extremely high-performance results (F-score > 90%) obtained for the specific subclass of embedded entity relations that are essential for integrating text mining predictions with database facts. Conclusions The results from this study will enable us in the near future to annotate semantic relations between molecular entities in the entire scientific literature available through PubMed. The recent release of the EVEX dataset, containing biomolecular event predictions for millions of PubMed articles, is an interesting and exciting opportunity to overlay these entity relations with event predictions on a literature-wide scale

    Web-based learning and teaching resources for microscopic detection of human parasites.

    Get PDF
    DMU e-Parasitology (http://parasitology.dmu.ac.uk) presents novel web-based resources co-developed by EU academics at De Montfort University (DMU) for the teaching and learning of microscopic diagnoses of common and emerging human parasites. The package will be completed early in 2019 and presents a Virtual Laboratory and Microscope, which are equipped with engaging units for learning parasitological staining and fresh preparation techniques for detecting cysts, oocysts, eggs and spores, in conjunction with a library of digitised clinical slides. Units are equipped with short videos of academics performing the different techniques and quizzes and exercises, to provide students with the most practical experience possible

    The Boston University Photonics Center annual report 2015-2016

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2015-2016 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that this year the Center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.9M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and cooperated in supporting National Science Foundation sponsored Sites for Research Experiences for Undergraduates and for Research Experiences for Teachers. As a community, we emphasized the theme of “Frontiers in Plasmonics as Enabling Science in Photonics and Beyond” at our annual symposium, hosted by Bjoern Reinhard. We continued to support the National Photonics Initiative, and contributed as a cooperating site in the American Institute for Manufacturing Integrated Photonics (AIM Photonics) which began this year as a new photonics-themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Development of Less Toxic Treatment Strategies for Metastatic and Drug Resistant Breast Cancer Using Noninvasive Optical Monitoring led by Professor Darren Roblyer, continued support of our NIH-sponsored, Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and an exciting confluence of new grant awards in the area of Neurophotonics led by Professors Christopher Gabel, Timothy Gardner, Xue Han, Jerome Mertz, Siddharth Ramachandran, Jason Ritt, and John White. Neurophotonics is fast becoming a leading area of strength of the Photonics Center. The Industry/University Collaborative Research Center, which has become the centerpiece of our translational biophotonics program, continues to focus onadvancing the health care and medical device industries, and has entered its sixth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base
    corecore