1,364 research outputs found

    NASA Tech Briefs, November 2012

    Get PDF
    The topics include: Visual System for Browsing, Analysis, and Retrieval of Data (ViSBARD); Time-Domain Terahertz Computed Axial Tomography NDE System; Adaptive Sampling of Time Series During Remote Exploration; A Tracking Sun Photometer Without Moving Parts; Surface Temperature Data Analysis; Modular, Autonomous Command and Data Handling Software with Built-In Simulation and Test; In-Situ Wire Damage Detection System; Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions; Wideband Agile Digital Microwave Radiometer; Buckyball Nucleation of HiPco Tubes; FACT, Mega-ROSA, SOLAROSA; An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications; Engineered Multifunctional Surfaces for Fluid Handling; Polyolefin-Based Aerogels; Adjusting Permittivity by Blending Varying Ratios of SWNTs; Gravity-Assist Mechanical Simulator for Outreach; Concept for Hydrogen-Impregnated Nanofiber/Photovoltaic Cargo Stowage System; DROP: Durable Reconnaissance and Observation Platform; Developing Physiologic Models for Emergency Medical Procedures Under Microgravity; Spectroscopic Chemical Analysis Methods and Apparatus; Low Average Sidelobe Slot Array Antennas for Radiometer Applications; Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms; Water Treatment Systems for Long Spaceflights; Microchip Non-Aqueous Capillary Electrophoresis (MicronNACE) Method to Analyze Long-Chain Primary Amines; Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles; Mars Science Laboratory Engineering Cameras; Seismic Imager Space Telescope; Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations; A Posteriori Study of a DNS Database Describing Super critical Binary-Species Mixing; Scalable SCPPM Decoder; QuakeSim 2.0; HURON (HUman and Robotic Optimization Network) Multi-Agent Temporal Activity Planner/Scheduler; MPST Software: MoonKomman

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments

    Get PDF
    The need for designing lighter and more compact systems often leaves limited space for planning routes for the connectors that enable interactions among the system’s components. Finding optimal routes for these connectors in a densely populated environment left behind at the detail design stage has been a challenging problem for decades. A variety of deterministic as well as heuristic methods has been developed to address different instances of this problem. While the focus of the deterministic methods is primarily on the optimality of the final solution, the heuristics offer acceptable solutions, especially for such problems, in a reasonable amount of time without guaranteeing to find optimal solutions. This study is an attempt to furthering the efforts in deterministic optimization methods to tackle the routing problem in two and three dimensions by focusing on the optimality of final solutions. The objective of this research is twofold. First, a mathematical framework is proposed for the optimization of the layout of wiring connectors in planar cluttered environments. The problem looks at finding the optimal tree network that spans multiple components to be connected with the aim of minimizing the overall length of the connectors while maximizing their common length (for maintainability and traceability of connectors). The optimization problem is formulated as a bi-objective problem and two solution methods are proposed: (1) to solve for the optimal locations of a known number of breakouts (where the connectors branch out) using mixed-binary optimization and visibility notion and (2) to find the minimum length tree that spans multiple components of the system and generates the optimal layout using the previously-developed convex hull based routing. The computational performance of these methods in solving a variety of problems is further evaluated. Second, the problem of finding the shortest route connecting two given nodes in a 3D cluttered environment is considered and addressed through deterministically generating a graphical representation of the collision-free space and searching for the shortest path on the found graph. The method is tested on sample workspaces with scattered convex polyhedra and its computational performance is evaluated. The work demonstrates the NP-hardness aspect of the problem which becomes quickly intractable as added components or increase in facets are considered

    Geometric Path-Planning Algorithm in Cluttered 2D Environments Using Convex Hulls

    Get PDF
    Routing or path planning is the problem of finding a collision-free path in an environment usually scattered with multiple objects. Finding the shortest route in a planar (2D) or spatial (3D) environment has a variety of applications such as robot motion planning, navigating autonomous vehicles, routing of cables, wires, and harnesses in vehicles, routing of pipes in chemical process plants, etc. The problem often times is decomposed into two main sub-problems: modeling and representation of the workspace geometrically and optimization of the path. Geometric modeling and representation of the workspace are paramount in any path planning problem since it builds the data structures and provides the means for solving the optimization problem. The optimization aspect of the path planning involves satisfying some constraints, the most important of which is to avoid intersections with the interior of any object and optimizing one or more criteria. The most common criterion in path planning problems is to minimize the length of the path between a source and a destination point of the workspace while other criteria such as minimizing the number of links or curves could also be taken into account. Planar path planning is mainly about modeling the workspace of the problem as a collision-free graph. The graph is, later on, searched for the optimal path using network optimization techniques such as branch-and-bound or search algorithms such as Dijkstra\u27s. Previous methods developed to construct the collision-free graph explore the entire workspace of the problem which usually results in some unnecessary information that has no value but to increase the time complexity of the algorithm, hence, affecting the efficiency significantly. For example, the fastest known algorithm to construct the visibility graph, which is the most common method of modeling the collision-free space, in a workspace with a total of n vertices has a time complexity of order O(n2). In this research, first, the 2D workspace of the problem is modeled using the tessellated format of the objects in a CAD software which facilitates handling of any free-form object. Then, an algorithm is developed to construct the collision-free graph of the workspace using the convex hulls of the intersecting obstacles. The proposed algorithm focuses only on a portion of the workspace involved in the straight line connecting the source and destination points. Considering the worst case that all the objects of the workspace are intersecting, the algorithm yields a time complexity of O(nlog(n/f)), with n being the total number of vertices and f being the number of objects. The collision-free graph is later searched for the shortest path between the two given nodes using a search algorithm known as Dijkstra\u27s

    Single Arm Recumbent Bicycle

    Get PDF
    The goal of this report is to outline and cover the scope of work for the Single Arm Recumbent Bicycle Senior Project. The report will give an introduction of the problem, a background of the existing research or products relating to our project, the objectives of our project, our project management plan, our final design, manufacturing, testing, our project management, and final recommendations for improving the final design. The team is being supported by the Quality of Life Program, a non-profit organization that works to improve the lives of those injured in duty while serving our nation. Up until now, there have been no bikes developed for single arm triple amputees without the aid of prostheses. Nick Kimmel, a former marine, would like to join a group of firefighters participating in a charity bike ride from Seattle, Washington to Boulder, Colorado. This fundraising event is in support of the Gary Sinise Foundation which provides mortgage-free specially adapted smart homes to wounded veterans free of charge. In order to participate, Nick requires a bike that accommodates use with only one arm and no prosthetics. Currently, Nick, a triple amputee, is equipped with a hand-powered recumbent bicycle. However, since the bike is designed to be operated with two arms, Nick is not able to steer the bike properly, and in turn, strains his body. In addition, Nick intends to use the bike without the use of prosthetics because they overheat his body and inhibit his performance. For this reason, our group is tasked with developing a single-arm recumbent bicycle that has fully functioning steering, shifting, and braking while also being reliable and durable enough to handle a 1000-mile challenge, all without the use of prosthetics. This report presents all work done by the team over the course of this project. The Cal Poly senior project is focused on the process so you will see a lot of design tools in use throughout this report that our group used to assist us in our journey through the design process. This process includes tools such as decision matrices, Gantt charts, concept prototypes, testing, and even a total redesign for our project after getting feedback from our challenger, Nick

    Synthesis and Characterization of Acceptor: Donor Block Copolymers for Organic Photovoltaics

    Get PDF
    Mankind needs sources of clean power. Photovoltaic (PV) cells, in use since 1839, have proven reliable and practical for certain applications. PV cell efficiency has changed over the years from 1-2% to ultra-high efficiency cells operating at efficiencies greater than 40%. Organic photovoltaics are a potential transformative technology platform. The potential for cell use, efficiency and cost are all parts of the research and development focus at the time this document was written. This research was initiated with a focus on the synthesis and understanding of the variables effecting acceptor-donor block copolymer. The self-assembled morphology resulting from varying volume ratios of each block in the absence and presence of both A and B homopolymers singularly and in combination was examined

    Hangprinter for large scale additive manufacturing using fused particle fabrication with recycled plastic and continuous feeding

    Get PDF
    The life cycle of plastic is a key source of carbon emissions. Yet, global plastics production has quadrupled in 40 years and only 9 % has been recycled. If these trends continue, carbon emissions from plastic wastes would reach 15 % of global carbon budgets by 2050. An approach to reducing plastic waste is to use distributed recycling for additive manufacturing (DRAM) where virgin plastic products are replaced by locally manufactured recycled plastic products that have no transportation-related carbon emissions. Unfortunately, the design of most 3-D printers forces an increase in the machine cost to expand for recycling plastic at scale. Recently, a fused granular fabrication (FGF)/fused particle fabrication (FPF) large-scale printer was demonstrated with a GigabotX extruder based on the open source cable driven Hangprinter concept. To further improve that system, here a lower-cost recyclebot direct waste plastic extruder is demonstrated and the full designs, assembly and operation are detailed. The <$1,700 machine’s accuracy and printing performance are quantified, and the printed parts mechanical strength is within the range of other systems. Along with support from the Hangprinter and DUET3 communities, open hardware developers have a rich ecosystem to modify in order to print directly from waste plastic for DRAM

    Dynamic control of endogenous metabolism with combinatorial logic circuits

    Get PDF
    Controlling gene expression during a bioprocess enables real-time metabolic control, coordinated cellular responses, and staging order-of-operations. Achieving this with small molecule inducers is impractical at scale and dynamic circuits are difficult to design. Here, we show that the same set of sensors can be integrated by different combinatorial logic circuits to vary when genes are turned on and off during growth. Three Escherichia coli sensors that respond to the consumption of feedstock (glucose), dissolved oxygen, and by-product accumulation (acetate) are constructed and optimized. By integrating these sensors, logic circuits implement temporal control over an 18-h period. The circuit outputs are used to regulate endogenous enzymes at the transcriptional and post-translational level using CRISPRi and targeted proteolysis, respectively. As a demonstration, two circuits are designed to control acetate production by matching their dynamics to when endogenous genes are expressed (pta or poxB) and respond by turning off the corresponding gene. This work demonstrates how simple circuits can be implemented to enable customizable dynamic gene regulation.Synthetic Biology Engineering Research Center (SynBERC EEC0540879)United States. Office of Naval Research. Multidisciplinary University Research Initiative (N00014‐13‐1‐0074)United States. Department of Energy (DE‐SC0018368
    corecore