709 research outputs found

    Dynamically Controllable Integrated Radiation and Self-Correcting Power Generation in mm-Wave Circuits and Systems

    Get PDF
    This thesis presents novel design methodologies for integrated radiators and power generation at mm-wave frequencies that are enabled by the continued integration of various electronic and electromagnetic (EM) structures onto the same substrate. Beginning with the observation that transistors and their connections to EM radiating structures on an integrated substrate are essentially free, the concept of multi-port driven (MPD) radiators is introduced, which opens a vast design space that has been generally ignored due to the cost structure associated with discrete components that favors fewer transistors connected to antennas through a single port. From Maxwell's equations, a new antenna architecture, the radial MPD antennas based on the concept of MPD radiators, is analyzed to gain intuition as to the important design parameters that explain the wide-band nature of the antenna itself. The radiator is then designed and implemented at 160 GHz in a 0.13 um SiGe BiCMOS process, and the single element design has a measured effective isotropic radiated power (EIRP) of +4.6 dBm with a total radiated power of 0.63 mW. Next, the radial MPD radiator is adapted to enable dynamic polarization control (DPC). A DPC antenna is capable of controlling its radiated polarization dynamically, and entirely electronically, with no mechanical reconfiguration required. This can be done by having multiple antennas with different polarizations, or within a single antenna that has multiple drive points, as in the case of the MPD radiator with DPC. This radiator changes its polarization by adjusting the relative phase and amplitude of its multiple ports to produce polarizations with any polarization angle, and a wide range of axial ratios. A 2x1 MPD radiator array with DPC at 105 GHz is presented whose measurements show control of the polarization angle throughout the entire 0 degree through 180 degree range while in the linear polarization mode and maintaining axial ratios above 10 dB in all cases. Control of the axial ratio is also demonstrated with a measured range from 2.4 dB through 14 dB, while maintaining a fixed polarization angle. The radiator itself has a measured maximum EIRP of +7.8 dBm, with a total radiated power of 0.9 mW, and is capable of beam steering. MPD radiators were also applied in the domain of integrated silicon photonics. For these designs, the driver transistor circuitry was replaced with silicon optical waveguides and photodiodes to produce a 350 GHz signal. Three of these optical MPD radiator designs have been implemented as 2x2 arrays at 350 GHz. The first is a beam forming array that has a simulated gain of 12.1 dBi with a simulated EIRP of -2 dBm. The second has the same simulated performance, but includes optical phase modulators that enable two-dimensional beam steering. Finally, a third design incorporates multi-antenna DPC by combining the outputs of both left and right handed circularly polarized MPD antennas to produce a linear polarization with controllable polarization angle, and has a simulated gain of 11.9 dBi and EIRP of -3 dBm. In simulation, it can tune the polarization from 0 degrees through 180 degrees while maintaining a radiated power that has a 0.35 dB maximum deviation from the mean. The reliability of mm-wave radiators and power amplifiers was also investigated, and two self-healing systems have been proposed. Self-healing is a global feedback method where integrated sensors detect the performance of the circuit after fabrication and report that data to a digital control algorithm. The algorithm then is capable of setting actuators that can control the performance of the mm-wave circuit and counteract any performance degradation that is observed by the sensors. The first system is for a MPD radiator array with a partially integrated self-healing system. The self-healing MPD radiator senses substrate modes through substrate mode pickup sensors and infers the far-field radiated pattern from those sensors. DC current sensors are also included to determine the DC power consumption of the system. Actuators are implemented in the form of phase and amplitude control of the multiple drive points. The second self-healing system is a fully integrated self-healing power amplifier (PA) at 28 GHz. This system measures the output power, gain and efficiency of the PA using radio frequency (RF) power sensors, DC current sensors and junction temperature sensors. The digital block is synthesized from VHDL code on-chip and it can actuate the output power combining matching network using tunable transmission line stubs, as well as the DC operating point of the amplifying transistors through bias control. Measurements of 20 chips confirm self-healing for two different algorithms for process variation and transistor mismatch, while measurements from 10 chips show healing for load impedance mismatch, and linearity healing. Laser induced partial and total transistor failure show the benefit of self-healing in the case of catastrophic failure, with improvements of up to 3.9 dB over the default case. An exemplary yield specification shows self-healing improving the yield from 0% up through 80%.</p

    Ultra-Low Power Wake Up Receiver For Medical Implant Communications Service Transceiver

    Get PDF
    This thesis explores the specific requirements and challenges for the design of a dedicated wake-up receiver for medical implant communication services equipped with a novel “uncertain-IF†architecture combined with a high – Q filtering MEMS resonator and a free running CMOS ring oscillator as the RF LO. The receiver prototype, implements an IBM 0.18μm mixed-signal 7ML RF CMOS technology and achieves a sensitivity of -62 dBm at 404MHz while consuming \u3c100 μW from a 1 V supply

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Integrated Antennas and Active Beamformers Technology for mm-Wave Phased-Array Systems

    Get PDF
    In this thesis, based on the indoor channel measurements and ray-tracing modeling for the indoor mm-wave wireless communications, the challenges of the design of the radio in this band is studied. Considering the recently developed standards such as IEEE 802.15.3c, ECMA and WiGig at 60 GHz, the link budget of the system design for different classes of operation is done and the requirement for the antenna and other RF sections are extracted. Based on radiation characteristics of mm-wave and the fundamental limits of low-cost Silicon technology, it is shown that phased-array is the ultimate solution for the radio and physical layer of the mobile millimeter wave multi-Gb/s wireless networks. Different phased-array configurations are studied and a low-cost single-receiver array architecture with RF phase-shifting is proposed. A systematic approach to the analysis of the overall noise-figure of the proposed architecture is presented and the component technical requirements are derived for the system level specifications. The proposed on-chip antennas and antenna-in-packages for various applications are designed and verified by the measurement results. The design of patch antennas on the low-cost RT/Duroid substrate and the slot antennas on the IPD technologies as well as the compact on-chip slot DRA antenna are explained in the antenna design section. The design of reflective-type phase shifters in CMOS and MEMS technologies is explained. Finally, the design details of two developed 60 GHz integrated phased-arrays in CMOS technology are discussed. Front-end circuit blocks such as LNA, continuous passive reflective-type phase shifters, power combiner and variable gain amplifiers are investigated, designed and developed for a 60 GHz phased-array radio in CMOS technology. In the first design, the two-element CMOS phased-array front-ends based on passive phase shifting architecture is proposed and developed. In the second phased-array, the recently developed on-chip dielectric resonator antenna in our group in lower frequency is scaled and integrated with the front-end

    Silicon Integrated Arrays: From Microwave to IR

    Get PDF
    Integrated chips have enabled realization and mass production of complex systems in a small form factor. Through process miniaturization many novel applications in silicon photonics and electronic systems have been enabled. In this thesis I have provided several examples of innovations that are only enabled by integration. I have also demonstrated how electronics and photonics circuits can complement each other to achieve a system with superior performance.</p

    Physical Aspects of VLSI Design with a Focus on Three-Dimensional Integrated Circuit Applications

    Get PDF
    This work is on three-dimensional integration (3DI), and physical problems and aspects of VLSI design. Miniaturization and highly complex integrated systems in microelectronics have led to the 3DI development as a promising technological approach. 3DI offers numerous advantages: Size, power consumption, hybrid integration etc., with more thermal problems and physical complexity as trade-offs. We open this work by presenting the design and testing of an example 3DI system, to our knowledge the first self-powering system in a three-dimensional SOI technology. The system uses ambient optical energy harvested by a photodiode array and stored in an integrated capacitor. An on-chip metal interconnect network, beyond its designed role, behaves as a parasitic load vulnerable to electromagnetic coupling. We have developed a spatially-dependent, transient Green's Function based method of calculating the response of an interconnect network to noise. This efficient method can model network delays and noise sensitivity, which are involved problems in both planar and especially in 3DICs. Three-dimensional systems are more susceptible to thermal problems, which also affect VLSI with high power densities, of complex systems and under extreme temperatures. We analytically and experimentally investigate thermal effects in ICs. We study the effects of non-uniform, non-isotropic thermal conductivity of the typically complex IC material system, with a simulator we developed including this complexity. Through our simulations, verified by experiments, we propose a method of cooling or directionally heating IC regions. 3DICs are suited for developing wireless sensor networks, commonly referred to as ``smart dust.'' The ideal smart dust node includes RF communication circuits with on-chip passive components. We present an experimental study of on-chip inductors and transformers as integrated passives. We also demonstrate the performance improvement in 3DI with its lower capacitive loads. 3DI technology is just one example of the intense development in today's electronics, which maintains the need for educational methods to assist student recruitment into technology, to prepare students for a demanding technological landscape, and to raise societal awareness of technology. We conclude this work by presenting three electrical engineering curricula we designed and implemented, targeting these needs among others

    Concepts for Short Range Millimeter-wave Miniaturized Radar Systems with Built-in Self-Test

    Get PDF
    This work explores short-range millimeter wave radar systems, with emphasis on miniaturization and overall system cost reduction. The designing and implementation processes, starting from the system level design considerations and characterization of the individual components to final implementation of the proposed architecture are described briefly. Several D-band radar systems are developed and their functionality and performances are demonstrated

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Smart Sensor Networks For Sensor-Neural Interface

    Get PDF
    One in every fifty Americans suffers from paralysis, and approximately 23% of paralysis cases are caused by spinal cord injury. To help the spinal cord injured gain functionality of their paralyzed or lost body parts, a sensor-neural-actuator system is commonly used. The system includes: 1) sensor nodes, 2) a central control unit, 3) the neural-computer interface and 4) actuators. This thesis focuses on a sensor-neural interface and presents the research related to circuits for the sensor-neural interface. In Chapter 2, three sensor designs are discussed, including a compressive sampling image sensor, an optical force sensor and a passive scattering force sensor. Chapter 3 discusses the design of the analog front-end circuit for the wireless sensor network system. A low-noise low-power analog front-end circuit in 0.5μm CMOS technology, a 12-bit 1MS/s successive approximation register (SAR) analog-to-digital converter (ADC) in 0.18μm CMOS process and a 6-bit asynchronous level-crossing ADC realized in 0.18μm CMOS process are presented. Chapter 4 shows the design of a low-power impulse-radio ultra-wide-band (IR-UWB) transceiver (TRx) that operates at a data rate of up to 10Mbps, with a power consumption of 4.9pJ/bit transmitted for the transmitter and 1.12nJ/bit received for the receiver. In Chapter 5, a wireless fully event-driven electrogoniometer is presented. The electrogoniometer is implemented using a pair of ultra-wide band (UWB) wireless smart sensor nodes interfacing with low power 3-axis accelerometers. The two smart sensor nodes are configured into a master node and a slave node, respectively. An experimental scenario data analysis shows higher than 90% reduction of the total data throughput using the proposed fully event-driven electrogoniometer to measure joint angle movements when compared with a synchronous Nyquist-rate sampling system. The main contribution of this thesis includes: 1) the sensor designs that emphasize power efficiency and data throughput efficiency; 2) the fully event-driven wireless sensor network system design that minimizes data throughput and optimizes power consumption
    • …
    corecore