222 research outputs found

    A new dynamic predictive maintenance framework using deep learning for failure prognostics

    Get PDF
    In Prognostic Health and Management (PHM) literature, the predictive maintenance studies can be classified into two groups. The first group focuses on the prognostics step but does not consider the maintenance decisions. The second group addresses the maintenance optimization question based on the assumptions that the prognostics information or the degradation models of the system are already known. However, none of the two groups provides a complete framework (from data-driven prognostics to maintenance decisions) investigating the impact of the imperfect prognostics on maintenance decision. Therefore, this paper aims to fill this gap of literature. It presents a novel dynamic predicive maintenance framework based on sensor measurements. In this framework, the prognostics step, based on the Long Short-Term Memory network, is oriented towards the requirements of operation planners. It provides the probabilities that the system can fail in different time horizons to decide the moment for preparing and performing maintenance activities. The proposed framework is validated on a real application case study. Its performance is highlighted when compared with two benchmark maintenance policies: classical periodic and ideal predicted maintenance. In addition, the impact of the imperfect prognostics information on maintenance decisions is discussed in this paper

    Aeronautical Engineering: A special bibliography with indexes, supplement 64, December 1975

    Get PDF
    This bibliography lists 288 reports, articles, and other documents introduced into the NASA scientific and technical information system in November 1975

    ESMD Space Grant Faculty Report

    Get PDF
    The strength of the Exploration Systems Mission Directorate ESMD Faculty Project lies in its ability to meet National Aeronautics Space Administration NASA's Strategic Educational Outcome 1 by developing a sustainable and long-term integration of student involvement at academic institutions with all NASA Centers. This outcome is achieved by a three-fold approach: 1) by collecting Senior Design projects pertaining to Constellation work performed at each of the ten NASA Centers, 2) by engaging students at Minority Serving Institutions in the art of systems engineering and systems design of technologies required for space exploration, and 3) by identifying potential internships at each Center relative to exploration that provide students who are supported by their institutional Space Grant to engage in on-going mission-level and explorative systems designs. The objectives of the ESMD Faculty Project are to: 1. Aid the Centers (both Education Offices and associated technical organizations) in providing relevant opportunities for the ESMD Space Grant Program to support student and faculty in Senior Design projects 2. Enable better matches between the ESMD work required and what the Space Grant Consortia can do to effectively contribute to NASA programs 3. Provide the Space Grant Consortia an opportunity to strengthen relations with the NASA Centers 4. Develop better collective understanding of the U.S. Space Exploration Policy by the Center, Space Grant, faculty, Education Office, and students 5. Enable Space Grant institution faculty to better prepare their students to meet current and future NASA needs 6. Enable the Center Education Offices to strengthen their ties to their technical organizations and Space Grant Consortia 7. Aid KSC in gaining a greater and more detailed understanding of each of the Center activities Senior Design projects are intended to stimulate undergraduate students on current NASA activities related to lunar, Mars, and other planetary missions and to bring out innovative and novel ideas that can be used to complement those currently under development at respective NASA Centers. Additionally, such academic involvement would better the prospects for graduating seniors to pursue graduate studies and to seek careers in the space industry with a strong sense for systems engineering and understanding of design concepts. Internships, on the other hand, are intended to provide hands-on experience to students by engaging them in diverse state-of-the-art technology development, prototype bread-boarding, computer modeling and simulations, hardware and software testing, and other activities that provide students a strong perspective of NASA's vision and mission in enhancing the knowledge of Earth and space planetary sciences. Ten faculty members, each from a Space Grant Consortium-affiliated university, worked at ten NASA Centers for five weeks between June 2 and July 3, 2008. The project objectives listed above were achieved. In addition to collecting data on Senior Design ideas and identifying possible internships that would benefit NASA/ESMD, the faculty fellows promoted and collected data when required for other ESMD-funded programs and helped the Center's Education Office, as,needed.

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Optimizing the Implementation of Green Technologies Under Climate Change Uncertainty

    Get PDF
    In this study, we aim to investigate the application of the green technologies (i.e., green roofs (GRs), Photovoltaic (PV) panels, and battery integrated PV systems) under climate change-related uncertainty through three separate, but inherently related studies, and utilize optimization methods to provide new solutions or improve the currently available methodsFirst, we develop a model to evaluate and optimize the joint placement of PV panels and GRs under climate change uncertainty. We consider the efficiency drop of PV panels due to heat, savings from GRs, and the interaction between them. We develop a two-stage stochastic programming model to optimally place PV panels and GRs under climate change uncertainty to maximize the overall profit. We calibrate the model and then conduct a case study on the City of Knoxville, TN.Second, we study the diffusion rate of the green technologies under different climate projections for the City of Knoxville through the integration of simulation and dynamic programming. We aim to investigate the diffusion rates for PV panels and/or GRs under climate change uncertainty in the City of Knoxville, TN. We further investigate the effect of different and evaluate their effects on the diffusion rate. We first present the agent based framework and the mathematical model behind it. Then, we study the effects of different policies on the results and rate of diffusion.Lastly, We aim to study a Lithium-ion battery load connected to a PV system to store the excess generated electricity throughout the day. The stored energy is then used when the PV system is not able to generate electricity due to a lack of direct solar radiation. This study is an attempt to minimize the cost of electricity bill for a medium sized household by maximizing the battery package utilization. We develop a Markov decision processes (MDP) model to capture the stochastic nature of the panels\u27 output due to weather. Due to the minute reduction in the Li-ion battery capacity per day, we have to deal with an excessively large state space. Hence, we utilize reinforcement learning methods (i.e., Q-Learning) to find the optimal policy

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin

    Real-Time Monitoring and Prediction of Airspace Safety

    Get PDF
    The U.S. National Airspace System (NAS) has reached an extremely high level of safety in recent years. However, it will only become more difficult to maintain the current level of safety with the forecasted increase in operations, and so the FAA has been making revolutionary changes to the NAS to both expand capacity and ensure safety. Our work complements these efforts by developing a novel model-based framework for real-time monitoring and prediction of the safety of the NAS. Our framework is divided into two parts: (offline) safety analysis and modeling part, and a real-time (online) monitoring and prediction of safety. The goal of the safety analysis task is to identify hazards to flight (distilled from several national databases) and to codify these hazards within our framework such that we can monitor and predict them. From these we define safety metrics that can be monitored and predicted using dynamic models of airspace operations, aircraft, and weather, along with a rigorous, mathematical treatment of uncertainty. We demonstrate our overall approach and highlight the advantages of this approach over the current state-of-the-art through simulated scenarios

    Bridging the Gap Between Energy and Climate Policies in Brazil: Policy Options to Reduce Energy-Related GHG Emissions

    Get PDF
    Brazil is facing a series of important policy decisions that will determine its energy future over the next several decades, with important implications for the country's economic competitiveness, the well-being of its citizens, and the global climate. The decisions concern the direction of approximately 0.5 trillion U.S. dollars of anticipated investment in energy infrastructure over the next decade -- which can either lock in carbon-intensive infrastructure, or advance Brazil's position as a leader in the low-carbon economy. This report examines Brazil's key energy-related GHG emitting sectors through a climate lens in order to offer recommendations for a more integrated approach that can more effectively reconcile energy and climate needs. It begins with an overview of Brazil's past energy and GHG emissions profiles, current pledges and future trends, and a discussion of the implications for a possible allocation of the remaining global carbon budget. Next, it reviews available scenarios for Brazil's energy-related GHG emissions in order to identify key drivers and results and compare them to a given allocation of the global carbon budget. It then focuses on the top emitting subsectors -- transport, industry, and power generation -- to identify key abatement opportunities. The report concludes with recommendations regarding a portfolio of policies and measures that could achieve both climate and energy objectives
    • …
    corecore