1,117 research outputs found

    Challenges and Some New Directions in Channel Coding

    Get PDF
    Three areas of ongoing research in channel coding are surveyed, and recent developments are presented in each area: spatially coupled Low-Density Parity-Check (LDPC) codes, nonbinary LDPC codes, and polar coding.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/JCN.2015.00006

    Improve the Usability of Polar Codes: Code Construction, Performance Enhancement and Configurable Hardware

    Full text link
    Error-correcting codes (ECC) have been widely used for forward error correction (FEC) in modern communication systems to dramatically reduce the signal-to-noise ratio (SNR) needed to achieve a given bit error rate (BER). Newly invented polar codes have attracted much interest because of their capacity-achieving potential, efficient encoder and decoder implementation, and flexible architecture design space.This dissertation is aimed at improving the usability of polar codes by providing a practical code design method, new approaches to improve the performance of polar code, and a configurable hardware design that adapts to various specifications. State-of-the-art polar codes are used to achieve extremely low error rates. In this work, high-performance FPGA is used in prototyping polar decoders to catch rare-case errors for error-correcting performance verification and error analysis. To discover the polarization characteristics and error patterns of polar codes, an FPGA emulation platform for belief-propagation (BP) decoding is built by a semi-automated construction flow. The FPGA-based emulation achieves significant speedup in large-scale experiments involving trillions of data frames. The platform is a key enabler of this work. The frozen set selection of polar codes, known as bit selection, is critical to the error-correcting performance of polar codes. A simulation-based in-order bit selection method is developed to evaluate the error rate of each bit using Monte Carlo simulations. The frozen set is selected based on the bit reliability ranking. The resulting code construction exhibits up to 1 dB coding gain with respect to the conventional bit selection. To further improve the coding gain of BP decoder for low-error-rate applications, the decoding error mechanisms are studied and analyzed, and the errors are classified based on their distinct signatures. Error detection is enabled by low-cost CRC concatenation, and post-processing algorithms targeting at each type of the error is designed to mitigate the vast majority of the decoding errors. The post-processor incurs only a small implementation overhead, but it provides more than an order of magnitude improvement of the error-correcting performance. The regularity of the BP decoder structure offers many hardware architecture choices. Silicon area, power consumption, throughput and latency can be traded to reach the optimal design points for practical use cases. A comprehensive design space exploration reveals several practical architectures at different design points. The scalability of each architecture is also evaluated based on the implementation candidates. For dynamic communication channels, such as wireless channels in the upcoming 5G applications, multiple codes of different lengths and code rates are needed to t varying channel conditions. To minimize implementation cost, a universal decoder architecture is proposed to support multiple codes through hardware reuse. A 40nm length- and rate-configurable polar decoder ASIC is demonstrated to fit various communication environments and service requirements.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140817/1/shuangsh_1.pd

    Bridging the complexity gap in Tbps-achieving THz-band baseband processing

    Full text link
    Recent advances in electronic and photonic technologies have allowed efficient signal generation and transmission at terahertz (THz) frequencies. However, as the gap in THz-operating devices narrows, the demand for terabit-per-second (Tbps)-achieving circuits is increasing. Translating the available hundreds of gigahertz (GHz) of bandwidth into a Tbps data rate requires processing thousands of information bits per clock cycle at state-of-the-art clock frequencies of digital baseband processing circuitry of a few GHz. This paper addresses these constraints and emphasizes the importance of parallelization in signal processing, particularly for channel code decoding. By leveraging structured sub-spaces of THz channels, we propose mapping bits to transmission resources using shorter code words, extending parallelizability across all baseband processing blocks. THz channels exhibit quasi-deterministic frequency, time, and space structures that enable efficient parallel bit mapping at the source and provide pseudo-soft bit reliability information for efficient detection and decoding at the receiver

    Polar-Coded OFDM with Index Modulation

    Get PDF
    Polar codes, as the first error-correcting codes with an explicit construction to provably achieve thesymmetric capacity of memoryless channels, which are constructed based on channel polarization, have recently become a primary contender in communication networks for achieving tighter requirements with relatively low complexity. As one of the contributions in this thesis, three modified polar decoding schemes are proposed. These schemes include enhanced versions of successive cancellation-flip (SC-F), belief propagation (BP), and sphere decoding (SD). The proposed SC-F utilizes novel potential incorrect bits selection criteria and stack to improve its error correction performance. Next, to make the decoding performance of BP better, permutation and feedback structure are utilized. Then, in order to reduce the complexity without compromising performance, a SD by using novel decoding strategies according to modified path metric (PM) and radius extension is proposed. Additionally, to solve the problem that BP has redundant iterations, a new stopping criterion based on bit different ratio (BDR) is proposed. According to the simulation results and mathematical proof, all proposed schemes can achieve corresponding performance improvement or complexity reduction compared with existing works. Beside applying polar coding, to achieve a reliable and flexible transmission in a wireless communication system, a modified version of orthogonal frequency division multiplexing (OFDM) modulation based on index modulation, called OFDM-in-phase/quadrature-IM (OFDM-I/Q-IM), is applied. This modulation scheme can simultaneously improve spectral efficiency and bit-error rate (BER) performance with great flexibility in design and implementation. Hence, OFDM-I/Q-IM is considered as a potential candidate in the new generation of cellular networks. As the main contribution in this work, a polar-coded OFDM-I/Q-IM system is proposed. The general design guidelines for overcoming the difficulties associated with the application of polar codes in OFDM-I/Q-IM are presented. In the proposed system, at the transmitter, we employ a random frozen bits appending scheme which not only makes the polar code compatible with OFDM-I/Q-IM but also improves the BER performance of the system. Furthermore, at the receiver, it is shown that the \textit{a posteriori} information for each index provided by the index detector is essential for the iterative decoding of polar codes by the BP algorithm. Simulation results show that the proposed polar-coded OFDM-I/Q-IM system outperforms its OFDM counterpart in terms of BER performance

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times

    Algorithm Development and VLSI Implementation of Energy Efficient Decoders of Polar Codes

    Get PDF
    With its low error-floor performance, polar codes attract significant attention as the potential standard error correction code (ECC) for future communication and data storage. However, the VLSI implementation complexity of polar codes decoders is largely influenced by its nature of in-series decoding. This dissertation is dedicated to presenting optimal decoder architectures for polar codes. This dissertation addresses several structural properties of polar codes and key properties of decoding algorithms that are not dealt with in the prior researches. The underlying concept of the proposed architectures is a paradigm that simplifies and schedules the computations such that hardware is simplified, latency is minimized and bandwidth is maximized. In pursuit of the above, throughput centric successive cancellation (TCSC) and overlapping path list successive cancellation (OPLSC) VLSI architectures and express journey BP (XJBP) decoders for the polar codes are presented. An arbitrary polar code can be decomposed by a set of shorter polar codes with special characteristics, those shorter polar codes are referred to as constituent polar codes. By exploiting the homogeneousness between decoding processes of different constituent polar codes, TCSC reduces the decoding latency of the SC decoder by 60% for codes with length n = 1024. The error correction performance of SC decoding is inferior to that of list successive cancellation decoding. The LSC decoding algorithm delivers the most reliable decoding results; however, it consumes most hardware resources and decoding cycles. Instead of using multiple instances of decoding cores in the LSC decoders, a single SC decoder is used in the OPLSC architecture. The computations of each path in the LSC are arranged to occupy the decoder hardware stages serially in a streamlined fashion. This yields a significant reduction of hardware complexity. The OPLSC decoder has achieved about 1.4 times hardware efficiency improvement compared with traditional LSC decoders. The hardware efficient VLSI architectures for TCSC and OPLSC polar codes decoders are also introduced. Decoders based on SC or LSC algorithms suffer from high latency and limited throughput due to their serial decoding natures. An alternative approach to decode the polar codes is belief propagation (BP) based algorithm. In BP algorithm, a graph is set up to guide the beliefs propagated and refined, which is usually referred to as factor graph. BP decoding algorithm allows decoding in parallel to achieve much higher throughput. XJBP decoder facilitates belief propagation by utilizing the specific constituent codes that exist in the conventional factor graph, which results in an express journey (XJ) decoder. Compared with the conventional BP decoding algorithm for polar codes, the proposed decoder reduces the computational complexity by about 40.6%. This enables an energy-efficient hardware implementation. To further explore the hardware consumption of the proposed XJBP decoder, the computations scheduling is modeled and analyzed in this dissertation. With discussions on different hardware scenarios, the optimal scheduling plans are developed. A novel memory-distributed micro-architecture of the XJBP decoder is proposed and analyzed to solve the potential memory access problems of the proposed scheduling strategy. The register-transfer level (RTL) models of the XJBP decoder are set up for comparisons with other state-of-the-art BP decoders. The results show that the power efficiency of BP decoders is improved by about 3 times

    Challenges and some new directions in channel coding

    Get PDF
    Three areas of ongoing research in channel coding are surveyed, and recent developments are presented in each area: Spatially coupled low-density parity-check (LDPC) codes, nonbinary LDPC codes, and polar coding. © 2015 KICS
    • …
    corecore