276 research outputs found

    Cost-minimization predictive energy management of a postal-delivery fuel cell electric vehicle with intelligent battery State-of-Charge Planner

    Full text link
    Fuel cell electric vehicles have earned substantial attentions in recent decades due to their high-efficiency and zero-emission features, while the high operating costs remain the major barrier towards their large-scale commercialization. In such context, this paper aims to devise an energy management strategy for an urban postal-delivery fuel cell electric vehicle for operating cost mitigation. First, a data-driven dual-loop spatial-domain battery state-of-charge reference estimator is designed to guide battery energy depletion, which is trained by real-world driving data collected in postal delivery missions. Then, a fuzzy C-means clustering enhanced Markov speed predictor is constructed to project the upcoming velocity. Lastly, combining the state-of-charge reference and the forecasted speed, a model predictive control-based cost-optimization energy management strategy is established to mitigate vehicle operating costs imposed by energy consumption and power-source degradations. Validation results have shown that 1) the proposed strategy could mitigate the operating cost by 4.43% and 7.30% in average versus benchmark strategies, denoting its superiority in term of cost-reduction and 2) the computation burden per step of the proposed strategy is averaged at 0.123ms, less than the sampling time interval 1s, proving its potential of real-time applications

    Automation and Control Architecture for Hybrid Pipeline Robots

    Get PDF
    The aim of this research project, towards the automation of the Hybrid Pipeline Robot (HPR), is the development of a control architecture and strategy, based on reconfiguration of the control strategy for speed-controlled pipeline operations and self-recovering action, while performing energy and time management. The HPR is a turbine powered pipeline device where the flow energy is converted to mechanical energy for traction of the crawler vehicle. Thus, the device is flow dependent, compromising the autonomy, and the range of tasks it can perform. The control strategy proposes pipeline operations supervised by a speed control, while optimizing the energy, solved as a multi-objective optimization problem. The states of robot cruising and self recovering, are controlled by solving a neuro-dynamic programming algorithm for energy and time optimization, The robust operation of the robot includes a self-recovering state either after completion of the mission, or as a result of failures leading to the loss of the robot inside the pipeline, and to guaranteeing the HPR autonomy and operations even under adverse pipeline conditions Two of the proposed models, system identification and tracking system, based on Artificial Neural Networks, have been simulated with trial data. Despite the satisfactory results, it is necessary to measure a full set of robot’s parameters for simulating the complete control strategy. To solve the problem, an instrumentation system, consisting on a set of probes and a signal conditioning board, was designed and developed, customized for the HPR’s mechanical and environmental constraints. As a result, the contribution of this research project to the Hybrid Pipeline Robot is to add the capabilities of energy management, for improving the vehicle autonomy, increasing the distances the device can travel inside the pipelines; the speed control for broadening the range of operations; and the self-recovery capability for improving the reliability of the device in pipeline operations, lowering the risk of potential loss of the robot inside the pipeline, causing the degradation of pipeline performance. All that means the pipeline robot can target new market sectors that before were prohibitive

    Optimization-Based Power Management of Hybrid Power Systems with Applications in Advanced Hybrid Electric Vehicles and Wind Farms with Battery Storage

    Get PDF
    Modern hybrid electric vehicles and many stationary renewable power generation systems combine multiple power generating and energy storage devices to achieve an overall system-level efficiency and flexibility which is higher than their individual components. The power or energy management control, ``brain\u27 of these ``hybrid\u27 systems, determines adaptively and based on the power demand the power split between multiple subsystems and plays a critical role in overall system-level efficiency. This dissertation proposes that a receding horizon optimal control (aka Model Predictive Control) approach can be a natural and systematic framework for formulating this type of power management controls. More importantly the dissertation develops new results based on the classical theory of optimal control that allow solving the resulting optimal control problem in real-time, in spite of the complexities that arise due to several system nonlinearities and constraints. The dissertation focus is on two classes of hybrid systems: hybrid electric vehicles in the first part and wind farms with battery storage in the second part. The first part of the dissertation proposes and fully develops a real-time optimization-based power management strategy for hybrid electric vehicles. Current industry practice uses rule-based control techniques with ``else-then-if\u27 logic and look-up maps and tables in the power management of production hybrid vehicles. These algorithms are not guaranteed to result in the best possible fuel economy and there exists a gap between their performance and a minimum possible fuel economy benchmark. Furthermore, considerable time and effort are spent calibrating the control system in the vehicle development phase, and there is little flexibility in real-time handling of constraints and re-optimization of the system operation in the event of changing operating conditions and varying parameters. In addition, a proliferation of different powertrain configurations may result in the need for repeated control system redesign. To address these shortcomings, we formulate the power management problem as a nonlinear and constrained optimal control problem. Solution of this optimal control problem in real-time on chronometric- and memory- constrained automotive microcontrollers is quite challenging; this computational complexity is due to the highly nonlinear dynamics of the powertrain subsystems, mixed-integer switching modes of their operation, and time-varying and nonlinear hard constraints that system variables should satisfy. The main contribution of the first part of the dissertation is that it establishes methods for systematic and step-by step improvements in fuel economy while maintaining the algorithmic computational requirements in a real-time implementable framework. More specifically a linear time-varying model predictive control approach is employed first which uses sequential quadratic programming to find sub-optimal solutions to the power management problem. Next the objective function is further refined and broken into a short and a long horizon segments; the latter approximated as a function of the state using the connection between the Pontryagin minimum principle and Hamilton-Jacobi-Bellman equations. The power management problem is then solved using a nonlinear MPC framework with a dynamic programming solver and the fuel economy is further improved. Typical simplifying academic assumptions are minimal throughout this work, thanks to close collaboration with research scientists at Ford research labs and their stringent requirement that the proposed solutions be tested on high-fidelity production models. Simulation results on a high-fidelity model of a hybrid electric vehicle over multiple standard driving cycles reveal the potential for substantial fuel economy gains. To address the control calibration challenges, we also present a novel and fast calibration technique utilizing parallel computing techniques. The second part of this dissertation presents an optimization-based control strategy for the power management of a wind farm with battery storage. The strategy seeks to minimize the error between the power delivered by the wind farm with battery storage and the power demand from an operator. In addition, the strategy attempts to maximize battery life. The control strategy has two main stages. The first stage produces a family of control solutions that minimize the power error subject to the battery constraints over an optimization horizon. These solutions are parameterized by a given value for the state of charge at the end of the optimization horizon. The second stage screens the family of control solutions to select one attaining an optimal balance between power error and battery life. The battery life model used in this stage is a weighted Amp-hour (Ah) throughput model. The control strategy is modular, allowing for more sophisticated optimization models in the first stage, or more elaborate battery life models in the second stage. The strategy is implemented in real-time in the framework of Model Predictive Control (MPC)

    Control of Energy Storage

    Get PDF
    Energy storage can provide numerous beneficial services and cost savings within the electricity grid, especially when facing future challenges like renewable and electric vehicle (EV) integration. Public bodies, private companies and individuals are deploying storage facilities for several purposes, including arbitrage, grid support, renewable generation, and demand-side management. Storage deployment can therefore yield benefits like reduced frequency fluctuation, better asset utilisation and more predictable power profiles. Such uses of energy storage can reduce the cost of energy, reduce the strain on the grid, reduce the environmental impact of energy use, and prepare the network for future challenges. This Special Issue of Energies explore the latest developments in the control of energy storage in support of the wider energy network, and focus on the control of storage rather than the storage technology itself

    The SCFO Real-Time Optimization Solver: Users' Guide (version 0.9.4)

    Get PDF
    This document acts as a detailed users' guide to the SCFO real-time optimization (RTO) solver, and guides the user through basic setup, configuration, and theoretical aspects of the solver. Several application examples are also presented

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Leveraging deep reinforcement learning in the smart grid environment

    Full text link
    L’apprentissage statistique moderne démontre des résultats impressionnants, où les or- dinateurs viennent à atteindre ou même à excéder les standards humains dans certaines applications telles que la vision par ordinateur ou les jeux de stratégie. Pourtant, malgré ces avancées, force est de constater que les applications fiables en déploiement en sont encore à leur état embryonnaire en comparaison aux opportunités qu’elles pourraient apporter. C’est dans cette perspective, avec une emphase mise sur la théorie de décision séquentielle et sur les recherches récentes en apprentissage automatique, que nous démontrons l’applica- tion efficace de ces méthodes sur des cas liés au réseau électrique et à l’optimisation de ses acteurs. Nous considérons ainsi des instances impliquant des unités d’emmagasinement éner- gétique ou des voitures électriques, jusqu’aux contrôles thermiques des bâtiments intelligents. Nous concluons finalement en introduisant une nouvelle approche hybride qui combine les performances modernes de l’apprentissage profond et de l’apprentissage par renforcement au cadre d’application éprouvé de la recherche opérationnelle classique, dans le but de faciliter l’intégration de nouvelles méthodes d’apprentissage statistique sur différentes applications concrètes.While modern statistical learning is achieving impressive results, as computers start exceeding human baselines in some applications like computer vision, or even beating pro- fessional human players at strategy games without any prior knowledge, reliable deployed applications are still in their infancy compared to what these new opportunities could fathom. In this perspective, with a keen focus on sequential decision theory and recent statistical learning research, we demonstrate efficient application of such methods on instances involving the energy grid and the optimization of its actors, from energy storage and electric cars to smart buildings and thermal controls. We conclude by introducing a new hybrid approach combining the modern performance of deep learning and reinforcement learning with the proven application framework of operations research, in the objective of facilitating seamlessly the integration of new statistical learning-oriented methodologies in concrete applications

    Special Topics in Information Technology

    Get PDF
    This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad background in various areas of Information Technology, especially Computer Science and Engineering, Electronics, Systems and Control, and Telecommunications. Each year, more than 50 PhDs graduate from the program. This book gathers the outcomes of the thirteen best theses defended in 2019-20 and selected for the IT PhD Award. Each of the authors provides a chapter summarizing his/her findings, including an introduction, description of methods, main achievements and future work on the topic. Hence, the book provides a cutting-edge overview of the latest research trends in Information Technology at Politecnico di Milano, presented in an easy-to-read format that will also appeal to non-specialists

    Towards optimal control of fuel cell hybrid electric vehicles

    Get PDF
    Global warming, the decline of natural resources as well as the strengthening of emission regulations have led to a research focus in new drive technologies. Within the group of alternative propulsion systems, fuel cell hybrid electric vehicle (FHEV) are considered especially promising. Since system efficiency as well as the operation characteristics are determined by the chosen energy management system (EMS) scheme, an optimal approach is a key aspect to guarantee optimal system operation in terms of power and energy efficiency, as well as component lifetime and costs. Existing research efforts mostly focus on the optimisation of the hydrogen consumption, while neglecting component degradation as additional important part of total system and operation cost. Furthermore, almost no published work considers the thermal management of a FHEV. Therefore, the presented work propose a novel model predictive control based energy management approach with a special focus on preventing fuel cell (FC) and battery (BAT) degradation and the vehicle’s thermal management. In order to minimise component ageing and degradation, the objective function which is used in the developed method, includes cost which account for both decreasing BAT state of health as well as FC operation conditions which accelerate the degradation of the FC. To be able to test the developed EMS, a model and a hardware based test environment were developed. Since there are no thermal management systems for FHEV presented in literature, a new concept with a hierarchical control scheme was designed. Because the newly developed energy management shall be tested based on real world data, a method to generate test cases representing typical driving scenarios based on real world driving data was developed and implemented. Finally, the hardware system was used to validate the simulation model and vice versa, the model based approach was validated on real hardware

    Advances in Supercapacitor Technology and Applications

    Get PDF
    Energy storage is a key topic for research, industry, and business, which is gaining increasing interest. Any available energy-storage technology (batteries, fuel cells, flywheels, and so on) can cover a limited part of the power-energy plane and is characterized by some inherent drawback. Supercapacitors (also known as ultracapacitors, electrochemical capacitors, pseudocapacitors, or double-layer capacitors) feature exceptional capacitance values, creating new scenarios and opportunities in both research and industrial applications, partly because the related market is relatively recent. In practice, supercapacitors can offer a trade-off between the high specific energy of batteries and the high specific power of traditional capacitors. Developments in supercapacitor technology and supporting electronics, combined with reductions in costs, may revolutionize everything from large power systems to consumer electronics. The potential benefits of supercapacitors move from the progresses in the technological processes but can be effective by the availability of the proper tools for testing, modeling, diagnosis, sizing, management and technical-economic analyses. This book collects some of the latest developments in the field of supercapacitors, ranging from new materials to practical applications, such as energy storage, uninterruptible power supplies, smart grids, electrical vehicles, advanced transportation and renewable sources
    • …
    corecore