7,008 research outputs found

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Design of Data-Driven Decision Support Systems for Business Process Standardization

    Get PDF
    Increasingly dynamic environments require organizations to engage in business process standardization (BPS) in response to environmental change. However, BPS depends on numerous contingency factors from different layers of the organization, such as strategy, business models (BMs), business processes (BPs) and application systems that need to be well-understood (“comprehended”) and taken into account by decision-makers for selecting appropriate standard BP designs that fit the organization. Besides, common approaches to BPS are non-data-driven and frequently do not exploit increasingly avail-able data in organizations. Therefore, this thesis addresses the following research ques-tion: “How to design data-driven decision support systems to increase the comprehen-sion of contingency factors on business process standardization?”. Theoretically grounded in organizational contingency theory (OCT), this thesis address-es the research question by conducting three design science research (DSR) projects to design data-driven decision support systems (DSSs) for SAP R/3 and S/4 HANA ERP systems that increase comprehension of BPS contingency factors. The thesis conducts the DSR projects at an industry partner within the context of a BPS and SAP S/4 HANA transformation program at a global manufacturing corporation. DSR project 1 designs a data-driven “Business Model Mining” system that automatical-ly “mines” BMs from data in application systems and represents results in an interactive “Business Model Canvas” (BMC) BI dashboard to comprehend BM-related BPS con-tingency factors. The project derives generic design requirements and a blueprint con-ceptualization for BMM systems and suggests an open, standardized reference data model for BMM. The project implements the software artifact “Business Model Miner” in Microsoft Azure / PowerBI and demonstrates technical feasibility by using data from an educational SAP S/4 HANA system, an open reference dataset, and three real-life SAP R/3 ERP systems. A field evaluation with 21 managers at the industry partner finds differences between tool results and BMCs created by managers and thus the po-tential for a complementary role of BMM tools to enrich the comprehension of BMs. A further controlled laboratory experiment with 142 students finds significant beneficial impacts on subjective and objective comprehension in terms of effectiveness, efficiency, and relative efficiency. Second, DSR project 2 designs a data-driven process mining DSS “KeyPro” to semi-automatically discover and prioritize the set of BPs occurring in an organization from log data to concentrate BPS initiatives on important BPs given limited organizational resources. The project derives objective and quantifiable BP importance metrics from BM and BPM literature and implements KeyPro for SAP R/3 ERP and S/4 HANA sys-tems in Microsoft SQL Server / Azure and interactive PowerBI dashboards. A field evaluation with 52 managers compares BPs detected manually by decision-makers against BPs discovered by KeyPro and reveals significant differences and a complemen-tary role of the artifact to deliver additional insights into the set of BPs in the organiza-tion. Finally, a controlled laboratory experiment with 30 students identifies the dash-boards with the lowest comprehension for further development. Third, OCT requires organizations to select a standard BP design that matches contin-gencies. Thus, DSR project 3 designs a process mining DSS to select a standard BP from a repository of different alternative designs based on the similarity of BPS contin-gency factors between the as-is process and the to-be standard processes. DSR project 3 thus derives four different process model variants for representing BPS contingency factors that vary according to determinant factors of process model comprehension (PMC) identified in PMC literature. A controlled laboratory evaluation with 150 stu-dents identifies significant differences in PMC. Based on laboratory findings, the DSS is implemented in the BPM platform “Apromore” to select standard BP reference mod-els from the SAP Best Practices Explorer for SAP S/4 HANA and applied for the pur-chase-to-pay and order-to-cash process of a manufacturing company

    Measuring relative opinion from location-based social media: A case study of the 2016 U.S. presidential election

    Get PDF
    Social media has become an emerging alternative to opinion polls for public opinion collection, while it is still posing many challenges as a passive data source, such as structurelessness, quantifiability, and representativeness. Social media data with geotags provide new opportunities to unveil the geographic locations of users expressing their opinions. This paper aims to answer two questions: 1) whether quantifiable measurement of public opinion can be obtained from social media and 2) whether it can produce better or complementary measures compared to opinion polls. This research proposes a novel approach to measure the relative opinion of Twitter users towards public issues in order to accommodate more complex opinion structures and take advantage of the geography pertaining to the public issues. To ensure that this new measure is technically feasible, a modeling framework is developed including building a training dataset by adopting a state-of-the-art approach and devising a new deep learning method called Opinion-Oriented Word Embedding. With a case study of the tweets selected for the 2016 U.S. presidential election, we demonstrate the predictive superiority of our relative opinion approach and we show how it can aid visual analytics and support opinion predictions. Although the relative opinion measure is proved to be more robust compared to polling, our study also suggests that the former can advantageously complement the later in opinion prediction

    A two-stage framework for designing visual analytics systems to augment organizational analytical processes

    Get PDF
    A perennially interesting research topic in the field of visual analytics is how to effectively develop systems that support organizational knowledge worker’s decision-making and reasoning processes. The primary objective of a visual analytic system is to facilitate analytical reasoning and discovery of insights through interactive visual interfaces. It also enables the transfer of capability and expertise from where it resides to where it is needed–across individuals, and organizations as necessary. The problem is, however, most domain analytical practices generally vary from organizations to organizations. This leads to the diversified design of visual analytics systems in incorporating domain analytical processes, making it difficult to generalize the success from one domain to another. Exacerbating this problem is the dearth of general models of analytical workflows available to enable such timely and effective designs. To alleviate these problems, this dissertation presents a two-stage framework for informing the design of a visual analytics system. This two-stage design framework builds upon and extends current practices pertaining to analytical workflow and focuses, in particular, on investigating its effect on the design of visual analytics systems for organizational environments. It aims to empower organizations with more systematic and purposeful information analyses through modeling the domain users’ reasoning processes. The first stage in this framework is an Observation and Designing stage, in which a visual analytic system is designed and implemented to abstract and encapsulate general organizational analytical processes, through extensive collaboration with domain users. The second stage is the User-centric Refinement stage, which aims at interactively enriching and refining the already encapsulated domain analysis process based on understanding user’s intentions through analyzing their task behavior. To implement this framework in the process of designing a visual analytics system, this dissertation proposes four general design recommendations that, when followed, empower such systems to bring the users closer to the center of their analytical processes. This dissertation makes three primary contributions: first, it presents a general characterization of the analytical workflow in organizational environments. This characterization fills in the blank of the current lack of such an analytical model and further represents a set of domain analytical tasks that are commonly applicable to various organizations. Secondly, this dissertation describes a two-stage framework for facilitating the domain users’ workflows through integrating their analytical models into interactive visual analytics systems. Finally, this dissertation presents recommendations and suggestions on enriching and refining domain analysis through capturing and analyzing knowledge workers’ analysis processes. To exemplify the generalizability of these design recommendations, this dissertation presents three visual analytics systems that are developed following the proposed recommendations, including Taste for Xerox Corporation, OpsVis for Microsoft, and IRSV for the U.S. Department of Transportation. All of these systems are deployed to domain knowledge workers and are adopted for their analytical practices. Extensive empirical evaluations are further conducted to demonstrate efficacy of these systems in facilitating domain analytical processes
    • …
    corecore