172 research outputs found

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    CL-SA-OFDM: Cross-layer and smart antenna based OFDM system performance enhancement

    Get PDF
    The growing usage of wireless services is lacking in providing high-speed data communication in recent times. Hence, many of the modulation techniques are evolved to attain these communication needs. The recent researches have widely considered OFDM technology as the prominent modulation mechanism to fulfill the futuristic needs of wireless communication. The OFDM can bring effective usage of resources, bandwidth, and system performance enhancement in collaboration with the smart antenna and resource allocation mechanism (adaptive). However, the usage of adaptive beamforming with the OFDM leads to complication in the design of medium access layer and which causes a problem in adaptive resource allocation mechanism (ARAM). Hence, the proposed manuscript intends to design an OFDM system by considering different switched beam smart antenna (SBSA) along with the cross-layer adaptive resource allocation (CLARA) and hybrid adaptive array (HAA). In this, various smart antenna mechanism are considered to analyze the quality of service (QoS) and complexity reduction in the OFDM system. In this paper, various SA schemes are used as per the quality of service (QoS) requirement of the different users. The performance analysis is conducted by considering data traffic reduction, bit-rate reduction, and average delay

    Timing and Carrier Synchronization in Wireless Communication Systems: A Survey and Classification of Research in the Last 5 Years

    Get PDF
    Timing and carrier synchronization is a fundamental requirement for any wireless communication system to work properly. Timing synchronization is the process by which a receiver node determines the correct instants of time at which to sample the incoming signal. Carrier synchronization is the process by which a receiver adapts the frequency and phase of its local carrier oscillator with those of the received signal. In this paper, we survey the literature over the last 5 years (2010–2014) and present a comprehensive literature review and classification of the recent research progress in achieving timing and carrier synchronization in single-input single-output (SISO), multiple-input multiple-output (MIMO), cooperative relaying, and multiuser/multicell interference networks. Considering both single-carrier and multi-carrier communication systems, we survey and categorize the timing and carrier synchronization techniques proposed for the different communication systems focusing on the system model assumptions for synchronization, the synchronization challenges, and the state-of-the-art synchronization solutions and their limitations. Finally, we envision some future research directions

    Analog Radio-over-Fiber for 5G/6G Millimeter-Wave Communications

    Get PDF

    mm-Wave Data Transmission and Measurement Techniques: A Holistic Approach

    Get PDF
    The ever-increasing demand on data services places unprecedented technical requirements on networks capacity. With wireless systems having significant roles in broadband delivery, innovative approaches to their development are imperative. By leveraging new spectral resources available at millimeter-wave (mm-wave) frequencies, future systems can utilize new signal structures and new system architectures in order to achieve long-term sustainable solutions.This thesis proposes the holistic development of efficient and cost-effective techniques and systems which make high-speed data transmission at mm-wave feasible. In this paradigm, system designs, signal processing, and measurement techniques work toward a single goal; to achieve satisfactory system level key performance indicators (KPIs). Two intimately-related objectives are simultaneously addressed: the realization of efficient mm-wave data transmission and the development of measurement techniques to enable and assist the design and evaluation of mm-wave circuits.The standard approach to increase spectral efficiency is to increase the modulation order at the cost of higher transmission power. To improve upon this, a signal structure called spectrally efficient frequency division multiplexing (SEFDM) is utilized. SEFDM adds an additional dimension of continuously tunable spectral efficiency enhancement. Two new variants of SEFDM are implemented and experimentally demonstrated, where both variants are shown to outperform standard signals.A low-cost low-complexity mm-wave transmitter architecture is proposed and experimentally demonstrated. A simple phase retarder predistorter and a frequency multiplier are utilized to successfully generate spectrally efficient mm-wave signals while simultaneously mitigating various issues found in conventional mm-wave systems.A measurement technique to characterize circuits and components under antenna array mutual coupling effects is proposed and demonstrated. With minimal setup requirement, the technique effectively and conveniently maps prescribed transmission scenarios to the measurement environment and offers evaluations of the components in terms of relevant KPIs in addition to conventional metrics.Finally, a technique to estimate transmission and reflection coefficients is proposed and demonstrated. In one variant, the technique enables the coefficients to be estimated using wideband modulated signals, suitable for implementation in measurements performed under real usage scenarios. In another variant, the technique enhances the precision of noisy S-parameter measurements, suitable for characterizations of wideband mm-wave components

    RIS-Enabled SISO Localization under User Mobility and Spatial-Wideband Effects

    Get PDF
    Reconfigurable intelligent surface (RIS) is a promising technological enabler for the 6th generation (6G) of wireless systems with applications in localization and communication. In this paper, we consider the problem of positioning a single-antenna user in 3D space based on the received signal from a single-antenna base station and reflected signal from an RIS by taking into account the mobility of the user and spatial-wideband (WB) effects. To do so, we first derive the spatial-WB channel model under the far-field assumption, for orthogonal frequency-division multiplexing signal transmission with the user having a constant velocity. We derive the Cram\\u27er Rao bounds to serve as a benchmark. Furthermore, we devise a low-complexity estimator that attains the bounds in high signal-to-noise ratios. Our estimator neglects the spatial-WB effects and deals with the user mobility by estimating the radial velocities and compensating for their effects in an iterative fashion. We show that the spatial-WB effects can degrade the localization accuracy for large RIS sizes and large signal bandwidths as the direction of arrival or departure deviate from the RIS normal. In particular, for a 64 Ă—\times 64 RIS, the proposed estimator is resilient against the spatial-WB effects up to 140 MHz bandwidth. Regarding user mobility, our results suggest that the velocity of the user influences neither the bounds nor the accuracy of our estimator. Specifically, we observe that the state of the user with a high speed (42 m/s) can be estimated virtually with the same accuracy as a static user

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF

    Non-Coherent Massive MIMO-OFDM Down-Link Based on Differential Modulation

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) are wireless radio technologies adopted by the new Fifth Generation (5G) of mobile communications. A very large number of antennas (massive MIMO) is used to perform the beam-forming of the transmitted signal, either to reduce the multi-user interference (MUI), when spatially multiplexing several users, or to compensate the path-loss when higher frequencies than microwave are used, such as the millimeter-waves (mm-Waves). Usually, a coherent demodulation scheme (CDS) is used in order to exploit MIMO-OFDM, where the channel estimation and the pre/post-equalization processes are complex and time consuming operations, which require a considerable pilot overhead and also increase the latency of the system. As an alternative, non-coherent techniques based on a differential modulation scheme have been proposed for the up-link (UL). However, it is not straightforward to extend these proposals to the down-link (DL) due to the (usually) reduced number of antennas at the receiver side. In this paper we overcome this problem, and assuming that each user equipment (UE) is only equipped with one single antenna, we propose the combination of beam-forming with a differential modulation scheme for the DL, enhanced by the frequency diversity. The new transmission and reception schemes are described, and the signal-to-interference-plus-noise ratio (SINR) and the complexity are analysed. The numerical results verify the accuracy of the analysis and show that our proposal outperforms the existing CDS with a significant lower complexity.This work was supported by project TERESA-ADA (TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE)
    • …
    corecore