3 research outputs found

    Steiner network construction for signal net routing with double-sided timing constraints

    Get PDF
    Compared to conventional Steiner tree signal net routing, non-tree topology is often superior in many aspects including timing performance, tolerance to open faults and variations. In nano-scale VLSI designs, interconnect delay is a performance bottleneck and variation effects are increasingly problematic. Therefore the advantages of non-tree topology are particularly appealing for timing critical net routings in nano-scale VLSI designs. We propose Steiner network construction heuristics which can generate either tree or non-tree of signal net with different slack wirelength tradeoffs, and handle both long path and short path constraints. Extensive experiments in different scenarios show that our heuristics usually improve timing slack by hundreds of pico seconds compared to traditional tree approaches while increasing only slightly in wirelength. These results show that our algorithm is a very promising approach for timing critical net routings

    Fast interconnect optimization

    Get PDF
    As the continuous trend of Very Large Scale Integration (VLSI) circuits technology scaling and frequency increases, delay optimization techniques for interconnect are increasingly important for achieving timing closure of high performance designs. For the gigahertz microprocessor and multi-million gate ASIC designs it is crucial to have fast algorithms in the design automation tools for many classical problems in the field to shorten time to market of the VLSI chip. This research presents algorithmic techniques and constructive models for two such problems: (1) Fast buffer insertion for delay optimization, (2) Wire sizing for delay optimization and variation minimization on non-tree networks. For the buffer insertion problem, this dissertation proposes several innovative speedup techniques for different problem formulations and the realistic requirement. For the basic buffer insertion problem, an O(n log2 n) optimal algorithm that runs much faster than the previous classical van GinnekenÂs O(n2) algorithm is proposed, where n is the number of buffer positions. For modern design libraries that contain hundreds of buffers, this research also proposes an optimal algorithm in O(bn2) time for b buffer types, a significant improvement over the previous O(b2n2) algorithm by Lillis, Cheng and Lin. For nets with small numbers of sinks and large numbers of buffer positions, a simple O(mn) optimal algorithm is proposed, where m is the number of sinks. For the buffer insertion with minimum cost problem, the problem is first proved to be NP-complete. Then several optimal and approximation techniques are proposed to further speed up the buffer insertion algorithm with resource control for big industrial designs. For the wire sizing problem, we propose a systematic method to size the wires of general non-tree RC networks. The new method can be used for delay optimization and variation reduction

    Sincronização em sistemas integrados a alta velocidade

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaA distribui ção de um sinal relógio, com elevada precisão espacial (baixo skew) e temporal (baixo jitter ), em sistemas sí ncronos de alta velocidade tem-se revelado uma tarefa cada vez mais demorada e complexa devido ao escalonamento da tecnologia. Com a diminuição das dimensões dos dispositivos e a integração crescente de mais funcionalidades nos Circuitos Integrados (CIs), a precisão associada as transições do sinal de relógio tem sido cada vez mais afectada por varia ções de processo, tensão e temperatura. Esta tese aborda o problema da incerteza de rel ogio em CIs de alta velocidade, com o objetivo de determinar os limites do paradigma de desenho sí ncrono. Na prossecu ção deste objectivo principal, esta tese propõe quatro novos modelos de incerteza com âmbitos de aplicação diferentes. O primeiro modelo permite estimar a incerteza introduzida por um inversor est atico CMOS, com base em parâmetros simples e su cientemente gen éricos para que possa ser usado na previsão das limitações temporais de circuitos mais complexos, mesmo na fase inicial do projeto. O segundo modelo, permite estimar a incerteza em repetidores com liga ções RC e assim otimizar o dimensionamento da rede de distribui ção de relógio, com baixo esfor ço computacional. O terceiro modelo permite estimar a acumula ção de incerteza em cascatas de repetidores. Uma vez que este modelo tem em considera ção a correla ção entre fontes de ruí do, e especialmente util para promover t ecnicas de distribui ção de rel ogio e de alimentação que possam minimizar a acumulação de incerteza. O quarto modelo permite estimar a incerteza temporal em sistemas com m ultiplos dom ínios de sincronismo. Este modelo pode ser facilmente incorporado numa ferramenta autom atica para determinar a melhor topologia para uma determinada aplicação ou para avaliar a tolerância do sistema ao ru ído de alimentação. Finalmente, usando os modelos propostos, são discutidas as tendências da precisão de rel ogio. Conclui-se que os limites da precisão do rel ogio são, em ultima an alise, impostos por fontes de varia ção dinâmica que se preveem crescentes na actual l ogica de escalonamento dos dispositivos. Assim sendo, esta tese defende a procura de solu ções em outros ní veis de abstração, que não apenas o ní vel f sico, que possam contribuir para o aumento de desempenho dos CIs e que tenham um menor impacto nos pressupostos do paradigma de desenho sí ncrono.Distributing a the clock simultaneously everywhere (low skew) and periodically everywhere (low jitter) in high-performance Integrated Circuits (ICs) has become an increasingly di cult and time-consuming task, due to technology scaling. As transistor dimensions shrink and more functionality is packed into an IC, clock precision becomes increasingly a ected by Process, Voltage and Temperature (PVT) variations. This thesis addresses the problem of clock uncertainty in high-performance ICs, in order to determine the limits of the synchronous design paradigm. In pursuit of this main goal, this thesis proposes four new uncertainty models, with di erent underlying principles and scopes. The rst model targets uncertainty in static CMOS inverters. The main advantage of this model is that it depends only on parameters that can easily be obtained. Thus, it can provide information on upcoming constraints very early in the design stage. The second model addresses uncertainty in repeaters with RC interconnects, allowing the designer to optimise the repeater's size and spacing, for a given uncertainty budget, with low computational e ort. The third model, can be used to predict jitter accumulation in cascaded repeaters, like clock trees or delay lines. Because it takes into consideration correlations among variability sources, it can also be useful to promote oorplan-based power and clock distribution design in order to minimise jitter accumulation. A fourth model is proposed to analyse uncertainty in systems with multiple synchronous domains. It can be easily incorporated in an automatic tool to determine the best topology for a given application or to evaluate the system's tolerance to power-supply noise. Finally, using the proposed models, this thesis discusses clock precision trends. Results show that limits in clock precision are ultimately imposed by dynamic uncertainty, which is expected to continue increasing with technology scaling. Therefore, it advocates the search for solutions at other abstraction levels, and not only at the physical level, that may increase system performance with a smaller impact on the assumptions behind the synchronous design paradigm
    corecore