107,597 research outputs found

    Energetics of active fluctuations in living cells

    Get PDF
    The nonequilibrium activity taking place in a living cell can be monitored with a tracer embedded in the medium. While microrheology experiments based on optical manipulation of such probes have become increasingly standard, we put forward a number of experiments with alternative protocols that, we claim, will provide new insight into the energetics of active fluctuations. These are based on either performing thermodynamic--like cycles in control-parameter space, or on determining response to external perturbations of the confining trap beyond simple translation. We illustrate our proposals on an active itinerant Brownian oscillator modeling the dynamics of a probe embedded in a living medium

    Automated Selection of Active Orbital Spaces

    Full text link
    One of the key challenges of quantum-chemical multi-configuration methods is the necessity to manually select orbitals for the active space. This selection requires both expertise and experience and can therefore impose severe limitations on the applicability of this most general class of ab initio methods. A poor choice of the active orbital space may yield even qualitatively wrong results. This is obviously a severe problem, especially for wave function methods that are designed to be systematically improvable. Here, we show how the iterative nature of the density matrix renormalization group combined with its capability to include up to about one hundred orbitals in the active space can be exploited for a systematic assessment and selection of active orbitals. These benefits allow us to implement an automated approach for active orbital space selection, which can turn multi-configuration models into black box approaches.Comment: 29 pages, 10 figures, 5 table

    Quantifying and Controlling Prethermal Nonergodicity in Interacting Floquet Matter

    Get PDF
    The use of periodic driving for synthesizing many-body quantum states depends crucially on the existence of a prethermal regime, which exhibits drive-tunable properties while forestalling the effects of heating. This dependence motivates the search for direct experimental probes of the underlying localized nonergodic nature of the wave function in this metastable regime. We report experiments on a many-body Floquet system consisting of atoms in an optical lattice subjected to ultrastrong sign-changing amplitude modulation. Using a double-quench protocol, we measure an inverse participation ratio quantifying the degree of prethermal localization as a function of tunable drive parameters and interactions. We obtain a complete prethermal map of the drive-dependent properties of Floquet matter spanning four square decades of parameter space. Following the full time evolution, we observe sequential formation of two prethermal plateaux, interaction-driven ergodicity, and strongly frequency-dependent dynamics of long-time thermalization. The quantitative characterization of the prethermal Floquet matter realized in these experiments, along with the demonstration of control of its properties by variation of drive parameters and interactions, opens a new frontier for probing far-from-equilibrium quantum statistical mechanics and new possibilities for dynamical quantum engineering

    Impact of random obstacles on the dynamics of a dense colloidal fluid

    Full text link
    Using molecular dynamics simulations we study the slow dynamics of a colloidal fluid annealed within a matrix of obstacles quenched from an equilibrated colloidal fluid. We choose all particles to be of the same size and to interact as hard spheres, thus retaining all features of the porous confinement while limiting the control parameters to the packing fraction of the matrix, {\Phi}m, and that of the fluid, {\Phi}f. We conduct detailed investigations on several dynamic properties, including the tagged-particle and collective intermediate scattering functions, the mean-squared displacement, and the van Hove function. We show the confining obstacles to profoundly impact the relaxation pattern of various quantifiers pertinent to the fluid. Varying the type of quantifier (tagged-particle or collective) as well as {\Phi}m and {\Phi}f, we unveil both discontinuous and continuous arrest scenarios. Furthermore, we discover subdiffusive behavior and demonstrate its close connection to the matrix structure. Our findings partly confirm the various predictions of a recent extension of mode-coupling theory to the quenched-annealed protocol.Comment: 16 pages, 20 figures, minor revision

    Sex‐specific activation of SK current by isoproterenol facilitates action potential triangulation and arrhythmogenesis in rabbit ventricles

    Get PDF
    Sex has a large influence on cardiac electrophysiological properties. Whether sex differences exist in apamin‐sensitive small conductance Ca2+‐activated K+ (SK) current (IKAS) remains unknown. We performed optical mapping, transmembrane potential, patch clamp, western blot and immunostaining in 62 normal rabbit ventricles, including 32 females and 30 males. IKAS blockade by apamin only minimally prolonged action potential (AP) duration (APD) in the basal condition for both sexes, but significantly prolonged APD in the presence of isoproterenol in females. Apamin prolonged APD at the level of 25% repolarization (APD25) more prominently than APD at the level of 80% repolarization (APD80), consequently reversing isoproterenol‐induced AP triangulation in females. In comparison, apamin prolonged APD to a significantly lesser extent in males and failed to restore the AP plateau during isoproterenol infusion. IKAS in males did not respond to the L‐type calcium current agonist BayK8644, but was amplified by the casein kinase 2 (CK2) inhibitor 4,5,6,7‐tetrabromobenzotriazole. In addition, whole‐cell outward IKAS densities in ventricular cardiomyocytes were significantly larger in females than in males. SK channel subtype 2 (SK2) protein expression was higher and the CK2/SK2 ratio was lower in females than in males. IKAS activation in females induced negative intracellular Ca2+–voltage coupling, promoted electromechanically discordant phase 2 repolarization alternans and facilitated ventricular fibrillation (VF). Apamin eliminated the negative Ca2+–voltage coupling, attenuated alternans and reduced VF inducibility, phase singularities and dominant frequencies in females, but not in males. We conclude that β‐adrenergic stimulation activates ventricular IKAS in females to a much greater extent than in males. IKAS activation plays an important role in ventricular arrhythmogenesis in females during sympathetic stimulation

    Investigation on energetic optimization problems of stochastic thermodynamics with iterative dynamic programming

    Full text link
    The energetic optimization problem, e.g., searching for the optimal switch- ing protocol of certain system parameters to minimize the input work, has been extensively studied by stochastic thermodynamics. In current work, we study this problem numerically with iterative dynamic programming. The model systems under investigation are toy actuators consisting of spring-linked beads with loading force imposed on both ending beads. For the simplest case, i.e., a one-spring actuator driven by tuning the stiffness of the spring, we compare the optimal control protocol of the stiffness for both the overdamped and the underdamped situations, and discuss how inertial effects alter the irreversibility of the driven process and thus modify the optimal protocol. Then, we study the systems with multiple degrees of freedom by constructing oligomer actuators, in which the harmonic interaction between the two ending beads is tuned externally. With the same rated output work, actuators of different constructions demand different minimal input work, reflecting the influence of the internal degrees of freedom on the performance of the actuators.Comment: 14 pages, 7 figures, communications in computational physics, in pres

    Work probability distribution in systems driven out of equilibrium

    Full text link
    We derive the differential equation describing the time evolution of the work probability distribution function of a stochastic system which is driven out of equilibrium by the manipulation of a parameter. We consider both systems described by their microscopic state or by a collective variable which identifies a quasiequilibrium state. We show that the work probability distribution can be represented by a path integral, which is dominated by ``classical'' paths in the large system size limit. We compare these results with simulated manipulation of mean-field systems. We discuss the range of applicability of the Jarzynski equality for evaluating the system free energy using these out-of-equilibrium manipulations. Large fluctuations in the work and the shape of the work distribution tails are also discussed
    corecore