18 research outputs found

    LGTBIDS: Layer-wise Graph Theory Based Intrusion Detection System in Beyond 5G

    Full text link
    The advancement in wireless communication technologies is becoming more demanding and pervasive. One of the fundamental parameters that limit the efficiency of the network are the security challenges. The communication network is vulnerable to security attacks such as spoofing attacks and signal strength attacks. Intrusion detection signifies a central approach to ensuring the security of the communication network. In this paper, an Intrusion Detection System based on the framework of graph theory is proposed. A Layerwise Graph Theory-Based Intrusion Detection System (LGTBIDS) algorithm is designed to detect the attacked node. The algorithm performs the layer-wise analysis to extract the vulnerable nodes and ultimately the attacked node(s). For each layer, every node is scanned for the possibility of susceptible node(s). The strategy of the IDS is based on the analysis of energy efficiency and secrecy rate. The nodes with the energy efficiency and secrecy rate beyond the range of upper and lower thresholds are detected as the nodes under attack. Further, detected node(s) are transmitted with a random sequence of bits followed by the process of re-authentication. The obtained results validate the better performance, low time computations, and low complexity. Finally, the proposed approach is compared with the conventional solution of intrusion detection.Comment: in IEEE Transactions on Network and Service Management, 202

    EMI and IEMI Impacts on the Radio Communication Network of Electrified Railway Systems: A Critical Review

    Get PDF

    Analytical Review and Study on Various Vertical Handover Management Technologies in 5G Heterogeneous Network

    Get PDF
    In recent mobile networks, due to the huge number of subscribers, the traffic may occur rapidly; therefore, it is complex to guarantee the accurate operation of the network. On the other hand, the Fifth generation (5G) network plays a vital role in the handover mechanism. Handover management is a prominent issue in 5G heterogeneous networks. Therefore, the Handover approach relocates the connection between the user equipment and the consequent terminal from one network to another. Furthermore, the handover approaches manage each active connection for the user equipment. This survey offers an extensive analysis of 50 research papers based on existing handover approaches in the 5G heterogeneous network. Finally, existing methods considering conventional vertical handover management strategies are elaborated to improve devising effective vertical handover management strategies. Moreover, the possible future research directions in attaining efficient vertical handover management in a 5G heterogeneous network are elaborated

    Optimization of Handover, Survivability, Multi-Connectivity and Secure Slicing in 5G Cellular Networks using Matrix Exponential Models and Machine Learning

    Get PDF
    Title from PDF of title page, viewed January 31, 2023Dissertation advisor: Cory BeardVitaIncludes bibliographical references (pages 173-194)Dissertation (Ph.D.)--Department of Computer Science and Electrical Engineering. University of Missouri--Kansas City, 2022This works proposes optimization of cellular handovers, cellular network survivability modeling, multi-connectivity and secure network slicing using matrix exponentials and machine learning techniques. We propose matrix exponential (ME) modeling of handover arrivals with the potential to much more accurately characterize arrivals and prioritize resource allocation for handovers, especially handovers for emergency or public safety needs. With the use of a ‘B’ matrix for representing a handover arrival, we have a rich set of dimensions to model system handover behavior. We can study multiple parameters and the interactions between system events along with the user mobility, which would trigger a handoff in any given scenario. Additionally, unlike any traditional handover improvement scheme, we develop a ‘Deep-Mobility’ model by implementing a deep learning neural network (DLNN) to manage network mobility, utilizing in-network deep learning and prediction. We use the radio and the network key performance indicators (KPIs) to train our model to analyze network traffic and handover requirements. Cellular network design must incorporate disaster response, recovery and repair scenarios. Requirements for high reliability and low latency often fail to incorporate network survivability for mission critical and emergency services. Our Matrix Exponential (ME) model shows how survivable networks can be designed based on controlling numbers of crews, times taken for individual repair stages, and the balance between fast and slow repairs. Transient and the steady state representations of system repair models, namely, fast and slow repairs for networks consisting of multiple repair crews have been analyzed. Failures are exponentially modeled as per common practice, but ME distributions describe the more complex recovery processes. In some mission critical communications, the availability requirements may exceed five or even six nines (99.9999%). To meet such a critical requirement and minimize the impact of mobility during handover, a Fade Duration Outage Probability (FDOP) based multiple radio link connectivity handover method has been proposed. By applying such a method, a high degree of availability can be achieved by utilizing two or more uncorrelated links based on minimum FDOP values. Packet duplication (PD) via multi-connectivity is a method of compensating for lost packets on a wireless channel. Utilizing two or more uncorrelated links, a high degree of availability can be attained with this strategy. However, complete packet duplication is inefficient and frequently unnecessary. We provide a novel adaptive fractional packet duplication (A-FPD) mechanism for enabling and disabling packet duplication based on a variety of parameters. We have developed a ‘DeepSlice’ model by implementing Deep Learning (DL) Neural Network to manage network load efficiency and network availability, utilizing in-network deep learning and prediction. Our Neural Network based ‘Secure5G’ Network Slicing model will proactively detect and eliminate threats based on incoming connections before they infest the 5G core network elements. These will enable the network operators to sell network slicing as-a-service to serve diverse services efficiently over a single infrastructure with higher level of security and reliability.Introduction -- Matrix exponential and deep learning neural network modeling of cellular handovers -- Survivability modeling in cellular networks -- Multi connectivity based handover enhancement and adaptive fractional packet duplication in 5G cellular networks -- Deepslice and Secure5G: a deep learning framework towards an efficient, reliable and secure network slicing in 5G networks -- Conclusion and future scop

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications
    corecore