551 research outputs found

    A formal concept view of argumentation

    Get PDF
    International audienceThe paper presents a parallel between two important theories for the treatment of information which address questions that are apparently unrelated and that are studied by different research communities: an enriched view of formal concept analysis and abstract argumentation. Both theories exploit a binary relation (expressing object-property links, attacks between arguments). We show that when an argumentation framework rather considers the complementary relation does not attack, then its stable extensions can be seen as the exact counterparts of formal concepts. This leads to a cube of oppositions, a generalization of the well-known square of oppositions, between eight remarkable sets of arguments. This provides a richer view for argumentation in cases of bi-valued attack relations and fuzzy ones

    Formal Concept Analysis from the Standpoint of Possibility Theory (ICFCA 2015)

    Get PDF
    International audienceFormal concept analysis (FCA) and possibility theory (PoTh) have been developed independently. They address different concerns in information processing: while FCA exploits relations linking objects and properties, and has applications in data mining and clustering, PoTh deals with the modeling of (graded) epistemic uncertainty. However, making a formal parallel between FCA and PoTh is fruitful. The four set-functions at work in PoTh have meaningful counterparts in FCA; this leads to consider operators neglected in FCA, and thus new fixed point equations. One of these pairs of equations, paralleling the one defining formal concepts in FCA, defines independent sub-contexts of objects and properties that have nothing in common. The similarity of the structures underlying FCA and PoTh is still more striking, using a cube of opposition (a device extending the traditional square of opposition in logic). Beyond the parallel between FCA and PoTh, this invited contribution, which largely relies on several past publications by the authors, also addresses issues pertaining to the possible meanings, degree of satisfaction vs. degree of certainty, of graded object-property links, which calls for distinct manners of handling the degrees. Other lines of interest for further research are briefly mentioned

    LearnFCA: A Fuzzy FCA and Probability Based Approach for Learning and Classification

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Dr Jitender Deogu

    Concept learning consistency under three‑way decision paradigm

    Get PDF
    Concept Mining is one of the main challenges both in Cognitive Computing and in Machine Learning. The ongoing improvement of solutions to address this issue raises the need to analyze whether the consistency of the learning process is preserved. This paper addresses a particular problem, namely, how the concept mining capability changes under the reconsideration of the hypothesis class. The issue will be raised from the point of view of the so-called Three-Way Decision (3WD) paradigm. The paradigm provides a sound framework to reconsider decision-making processes, including those assisted by Machine Learning. Thus, the paper aims to analyze the influence of 3WD techniques in the Concept Learning Process itself. For this purpose, we introduce new versions of the Vapnik-Chervonenkis dimension. Likewise, to illustrate how the formal approach can be instantiated in a particular model, the case of concept learning in (Fuzzy) Formal Concept Analysis is considered.This work is supported by State Investigation Agency (Agencia Estatal de InvestigaciĂłn), project PID2019-109152GB-100/AEI/10.13039/501100011033. We acknowledge the reviewers for their suggestions and guidance on additional references that have enriched our paper. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature

    Dual Logic Concepts based on Mathematical Morphology in Stratified Institutions: Applications to Spatial Reasoning

    Full text link
    Several logical operators are defined as dual pairs, in different types of logics. Such dual pairs of operators also occur in other algebraic theories, such as mathematical morphology. Based on this observation, this paper proposes to define, at the abstract level of institutions, a pair of abstract dual and logical operators as morphological erosion and dilation. Standard quantifiers and modalities are then derived from these two abstract logical operators. These operators are studied both on sets of states and sets of models. To cope with the lack of explicit set of states in institutions, the proposed abstract logical dual operators are defined in an extension of institutions, the stratified institutions, which take into account the notion of open sentences, the satisfaction of which is parametrized by sets of states. A hint on the potential interest of the proposed framework for spatial reasoning is also provided.Comment: 36 page
    • …
    corecore