6,631 research outputs found

    Full Issue

    Get PDF

    The legacy of 50 years of fuzzy sets: A discussion

    Get PDF
    International audienceThis note provides a brief overview of the main ideas and notions underlying fifty years of research in fuzzy set and possibility theory, two important settings introduced by L.A. Zadeh for representing sets with unsharp boundaries and uncertainty induced by granules of information expressed with words. The discussion is organized on the basis of three potential understanding of the grades of membership to a fuzzy set, depending on what the fuzzy set intends to represent: a group of elements with borderline members, a plausibility distribution, or a preference profile. It also questions the motivations for some existing generalized fuzzy sets. This note clearly reflects the shared personal views of its authors

    Neutrosophic Sets and Systems, Vol. 10, 2015

    Get PDF
    This volume is a collection of thirteen papers, written by different authors and co-authors (listed in the order of the papers): J. J. Peng and J. Q. Wang, E. Marei, S. Kar, K. Basu, S. Mukherjee, I. M. Hezam, M. Abdel-Baset and F. Smarandache, K. Mondal, S. Pramanik, A. Ionescu, M. R. Parveen and P. Sekar, B. Teodorescu, D. Kour and K. Basu, P. P. Dey and B. C. Giri, A. A. A. Agboola. In first paper, the authors studied Multi-valued Neutrosophic Sets and its Application in Multi-criteria Decision-Making Problems. More on neutrosophic soft rough sets and its modification is discussed in the second paper. Solution of Multi-Criteria Assignment Problem using Neutrosophic Set Theory are studied in third paper. In fourth paper, Taylor Series Approximation to Solve Neutrosophic Multiobjective Programming Problem. Similarly in fifth paper, Decision Making Based on Some similarity Measures under Interval Rough Neutrosophic Environment is discussed. In paper six, Neutralité neutrosophique et expressivité dans le style journalistique is studied by the author. Neutrosophic Semilattices and Their Properties given in seventh paper. Liminality and Neutrosophy is proposed in the next paper. Application of Extended Fuzzy Program-ming Technique to a real life Transportation Problem in Neutrosophic environment in the next paper. Further, TOPSIS for Single Valued Neutrosophic Soft Expert Set Based Multi-attribute Decision Making Problems is discussed by the authors in the tenth paper. In eleventh paper, Neutrosophic Quadruple Numbers, Refined Neutrosophic Quadruple Numbers, Absorbance Law, and the Multiplication of Neutrosophic Quadruple Numbers have been studied by the author. In the next paper, On Refined Neutrosophic Algebraic Structures. At the end, Neutrosophic Actions, Prevalence Order, Refinement of Neutrosophic Entities, and Neutrosophic Literal Logical Operators are introduced by the author

    Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review

    Get PDF
    Fifty years have gone by since the publication of the first paper on clustering based on fuzzy sets theory. In 1965, L.A. Zadeh had published “Fuzzy Sets” [335]. After only one year, the first effects of this seminal paper began to emerge, with the pioneering paper on clustering by Bellman, Kalaba, Zadeh [33], in which they proposed a prototypal of clustering algorithm based on the fuzzy sets theory

    An eclectic quadrant of rule based system verification: work grounded in verification of fuzzy rule bases.

    Get PDF
    In this paper, we used a research approach based on grounded theory in order to classify methods proposed in literature that try to extend the verification of classical rule bases to the case of fuzzy knowledge modeling. Within this area of verification we identify two dual lines of thought respectively leading to what is termed respectively static and dynamic anomaly detection methods. The major outcome of the confrontation of both approaches is that their results, most often stated in terms of necessary and/or sufficient conditions are difficult to reconcile. This paper addresses precisely this issue by the construction of a theoretical framework, which enables to effectively evaluate the results of both static and dynamic verification theories. Things essentially go wrong when in the quest for a good affinity, matching or similarity measure, one neglects to take into account the effect of the implication operator, an issue that rises above and beyond the fuzzy setting that initiated the research. The findings can easily be generalized to verification issues in any knowledge coding setting.Systems;

    Full Issue

    Get PDF

    A synthesis of fuzzy rule-based system verification.

    Get PDF
    The verification of fuzzy rule bases for anomalies has received increasing attention these last few years. Many different approaches have been suggested and many are still under investigation. In this paper, we give a synthesis of methods proposed in literature that try to extend the verification of clasical rule bases to the case of fuzzy knowledge modelling, without needing a set of representative input. Within this area of fyzzy V&V we identify two dual lines of thought respectively leading to what is identified as static and dynamic anomaly detection methods. Static anomaly detection essentially tries to use similarity, affinity or matching measures to identify anomalies wihin a fuzzy rule base. It is assumed that the detection methods can be the same as those used in a non-fuzzy environment, except that the formerly mentioned measures indicate the degree of matching of two fuzzy expressions. Dynamic anomaly detection starts from the basic idea that any anomaly within a knowledge representation formalism, i.c. fuzzy if-then rules, can be identified by performing a dynamic analysis of the knowledge system, even without providing special input to the system. By imposing a constraint on the results of inference for an anomaly not to occur, one creates definitions of the anomalies that can only be verified if the inference pocess, and thereby the fuzzy inference operator is involved in the analysis. The major outcome of the confrontation between both approaches is that their results, stated in terms of necessary and/or sufficient conditions for anomaly detection within a particular situation, are difficult to reconcile. The duality between approaces seems to have translated into a duality in results. This article addresses precisely this issue by presenting a theoretical framework which anables us to effectively evaluate the results of both static and dynamic verification theories.

    Simplified Neutrosophic Sets Based on Interval Dependent Degree for Multi-Criteria Group Decision-Making Problems

    Get PDF
    In this paper, a new approach and framework based on the interval dependent degree for multi-criteria group decision-making (MCGDM) problems with simplified neutrosophic sets (SNSs) is proposed. Firstly, the simplified dependent function and distribution function are defined. Then, they are integrated into the interval dependent function which contains interval computing and distribution information of the intervals
    • …
    corecore