2,205 research outputs found

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Merging SPOT-P and KVR-1000 for updating urban maps

    No full text
    International audienceThis communication presents a method allowing the combination of images acquired on the same area with different dates for updating urban maps. This method makes use of two mathematical tools, the wavelet transform and the multiresolution analysis which are shortly introduced. An example is provided in Jeddah (Saudi Aradia) for the updating of a KVR-1000 image by a SPOT panchromatic image acquired at a more recent date. Due to the difficulty to obtain KVR-1000 images at recent dates, this method allows the combination of the high spatial resolution of this kind of images and the regular acquisition of images by the different Earth observation satellites

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition

    Satellite Image Fusion in Various Domains

    Full text link
    In order to find out the fusion algorithm which is best suited for the panchromatic and multispectral images, fusion algorithms, such as PCA and wavelet algorithms have been employed and analyzed. In this paper, performance evaluation criteria are also used for quantitative assessment of the fusion performance. The spectral quality of fused images is evaluated by the ERGAS and Q4. The analysis indicates that the DWT fusion scheme has the best definition as well as spectral fidelity, and has better performance with regard to the high textural information absorption. Therefore, as the study area is concerned, it is most suited for the panchromatic and multispectral image fusion. an image fusion algorithm based on wavelet transform is proposed for Multispectral and panchromatic satellite image by using fusion in spatial and transform domains. In the proposed scheme, the images to be processed are decomposed into sub-images with the same resolution at same levels and different resolution at different levels and then the information fusion is performed using high-frequency sub-images under the Multi-resolution image fusion scheme based on wavelets produces better fused image than that by the MS or WA schemes

    Multiresolution based, multisensor, multispectral image fusion

    Get PDF
    Spaceborne sensors, which collect imagery of the Earth in various spectral bands, are limited by the data transmission rates. As a result the multispectral bands are transmitted at a lower resolution and only the panchromatic band is transmitted at its full resolution. The information contained in the multispectral bands is an invaluable tool for land use mapping, urban feature extraction, etc. However, the limited spatial resolution reduces the appeal and value of this information. Pan sharpening techniques enhance the spatial resolution of the multispectral imagery by extracting the high spatial resolution of the panchromatic band and adding it to the multispectral images. There are many different pan sharpening methods available like the ones based on the Intensity-Hue-Saturation and the Principal Components Analysis transformation. But these methods cause heavy spectral distortion of the multispectral images. This is a drawback if the pan sharpened images are to be used for classification based applications. In recent years, multiresolution based techniques have received a lot of attention since they preserve the spectral fidelity in the pan sharpened images. Many variations of the multiresolution based techniques exist. They differ based on the transform used to extract the high spatial resolution information from the images and the rules used to synthesize the pan sharpened image. The superiority of many of the techniques has been demonstrated by comparing them with fairly simple techniques like the Intensity-Hue-Saturation or the Principal Components Analysis. Therefore there is much uncertainty in the pan sharpening community as to which technique is the best at preserving the spectral fidelity. This research investigates these variations in order to find an answer to this question. An important parameter of the multiresolution based methods is the number of decomposition levels to be applied. It is found that the number of decomposition levels affects both the spatial and spectral quality of the pan sharpened images. The minimum number of decomposition levels required to fuse the multispectral and panchromatic images was determined in this study for image pairs with different resolution ratios and recommendations are made accordingly

    Multiresolution based, multisensor, multispectral image fusion

    Get PDF
    Spaceborne sensors, which collect imagery of the Earth in various spectral bands, are limited by the data transmission rates. As a result the multispectral bands are transmitted at a lower resolution and only the panchromatic band is transmitted at its full resolution. The information contained in the multispectral bands is an invaluable tool for land use mapping, urban feature extraction, etc. However, the limited spatial resolution reduces the appeal and value of this information. Pan sharpening techniques enhance the spatial resolution of the multispectral imagery by extracting the high spatial resolution of the panchromatic band and adding it to the multispectral images. There are many different pan sharpening methods available like the ones based on the Intensity-Hue-Saturation and the Principal Components Analysis transformation. But these methods cause heavy spectral distortion of the multispectral images. This is a drawback if the pan sharpened images are to be used for classification based applications. In recent years, multiresolution based techniques have received a lot of attention since they preserve the spectral fidelity in the pan sharpened images. Many variations of the multiresolution based techniques exist. They differ based on the transform used to extract the high spatial resolution information from the images and the rules used to synthesize the pan sharpened image. The superiority of many of the techniques has been demonstrated by comparing them with fairly simple techniques like the Intensity-Hue-Saturation or the Principal Components Analysis. Therefore there is much uncertainty in the pan sharpening community as to which technique is the best at preserving the spectral fidelity. This research investigates these variations in order to find an answer to this question. An important parameter of the multiresolution based methods is the number of decomposition levels to be applied. It is found that the number of decomposition levels affects both the spatial and spectral quality of the pan sharpened images. The minimum number of decomposition levels required to fuse the multispectral and panchromatic images was determined in this study for image pairs with different resolution ratios and recommendations are made accordingly

    Scale-Dependent Functions, Stochastic Quantization and Renormalization

    Get PDF
    We consider a possibility to unify the methods of regularization, such as the renormalization group method, stochastic quantization etc., by the extension of the standard field theory of the square-integrable functions ϕ(b)L2(Rd)\phi(b)\in L^2({\mathbb R}^d) to the theory of functions that depend on coordinate bb and resolution aa. In the simplest case such field theory turns out to be a theory of fields ϕa(b,)\phi_a(b,\cdot) defined on the affine group G:x=ax+bG:x'=ax+b, a>0,x,bRda>0,x,b\in {\mathbb R}^d, which consists of dilations and translation of Euclidean space. The fields ϕa(b,)\phi_a(b,\cdot) are constructed using the continuous wavelet transform. The parameters of the theory can explicitly depend on the resolution aa. The proper choice of the scale dependence g=g(a)g=g(a) makes such theory free of divergences by construction.Comment: Published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Comparison of Different Image Enhancing Techniques for Medical Thermal Images

    Get PDF
    Medical infrared (IR) images are, like other medical images, sensitive to noise, which affects directly the temperature measurement of the subject. There are several noise removal techniques that have good performance on digital images, but may produce different temperature readings on thermal images. Hundred and twenty different noisy images were selected from a database and after being processed with several noise removal techniques, the result was statistically analyzed using the standard parameters: maximum, minimum and mean temperature, standard deviation of same region of interest, root mean square error, signal to noise ratio, cross correlation coefficient. In the end, all techniques were compared and graded according with the results. This investigation shows that all techniques produce different results, the recommended method for improving medical thermal images are the Median, Mean and Wiener filters. Results however suggest that noise filtering should only be applied when specifically needed.info:eu-repo/semantics/publishedVersio
    corecore