829 research outputs found

    Clustering of multiple instance data.

    Get PDF
    An emergent area of research in machine learning that aims to develop tools to analyze data where objects have multiple representations is Multiple Instance Learning (MIL). In MIL, each object is represented by a bag that includes a collection of feature vectors called instances. A bag is positive if it contains at least one positive instance, and negative if no instances are positive. One of the main objectives in MIL is to identify a region in the instance feature space with high correlation to instances from positive bags and low correlation to instances from negative bags -- this region is referred to as a target concept (TC). Existing methods either only identify a single target concept, do not provide a mechanism for selecting the appropriate number of target concepts, or do not provide a flexible representation for target concept memberships. Thus, they are not suitable to handle data with large intra-class variation. In this dissertation we propose new algorithms that learn multiple target concepts simultaneously. The proposed algorithms combine concepts from data clustering and multiple instance learning. In particular, we propose crisp, fuzzy, and possibilistic variations of the Multi-target concept Diverse Density (MDD) metric, along with three algorithms to optimize them. Each algorithm relies on an alternating optimization strategy that iteratively refines concept assignments, locations, and scales until it converges to an optimal set of target concepts. We also demonstrate how the possibilistic MDD metric can be used to select the appropriate number of target concepts for a dataset. Lastly, we propose the construction of classifiers based on embedded feature space theory to use our target concepts to predict the label of prospective MIL data. The proposed algorithms are implemented, tested, and validated through the analysis of multiple synthetic and real-world data. We first demonstrate that our algorithms can detect multiple target concepts reliably, and are robust to many generative data parameters. We then demonstrate how our approach can be used in the application of Buried Explosive Object (BEO) detection to locate distinct target concepts corresponding to signatures of varying BEO types. We also demonstrate that our classifier strategies can perform competitively with other well-established embedded space approaches in classification of Benchmark MIL data

    Clustering of nonstationary data streams: a survey of fuzzy partitional methods

    Get PDF
    YesData streams have arisen as a relevant research topic during the past decade. They are real‐time, incremental in nature, temporally ordered, massive, contain outliers, and the objects in a data stream may evolve over time (concept drift). Clustering is often one of the earliest and most important steps in the streaming data analysis workflow. A comprehensive literature is available about stream data clustering; however, less attention is devoted to the fuzzy clustering approach, even though the nonstationary nature of many data streams makes it especially appealing. This survey discusses relevant data stream clustering algorithms focusing mainly on fuzzy methods, including their treatment of outliers and concept drift and shift.Ministero dell‘Istruzione, dell‘Universitá e della Ricerca

    Unsupervised tracking of time-evolving data streams and an application to short-term urban traffic flow forecasting

    Get PDF
    I am indebted to many people for their help and support I receive during my Ph.D. study and research at DIBRIS-University of Genoa. First and foremost, I would like to express my sincere thanks to my supervisors Prof.Dr. Masulli, and Prof.Dr. Rovetta for the invaluable guidance, frequent meetings, and discussions, and the encouragement and support on my way of research. I thanks all the members of the DIBRIS for their support and kindness during my 4 years Ph.D. I would like also to acknowledge the contribution of the projects Piattaforma per la mobili\ue0 Urbana con Gestione delle INformazioni da sorgenti eterogenee (PLUG-IN) and COST Action IC1406 High Performance Modelling and Simulation for Big Data Applications (cHiPSet). Last and most importantly, I wish to thanks my family: my wife Shaimaa who stays with me through the joys and pains; my daughter and son whom gives me happiness every-day; and my parents for their constant love and encouragement

    Fuzzy Set Methods for Object Recognition in Space Applications

    Get PDF
    Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms

    Methods for fast and reliable clustering

    Get PDF

    Uncertainty-wise software anti-patterns detection: A possibilistic evolutionary machine learning approach

    Get PDF
    Context: Code smells (a.k.a. anti-patterns) are manifestations of poor design solutions that can deteriorate software maintainability and evolution. Research gap: Existing works did not take into account the issue of uncertain class labels, which is an important inherent characteristic of the smells detection problem. More precisely, two human experts may have different degrees of uncertainty about the smelliness of a particular software class not only for the smell detection task but also for the smell type identification one. Unluckily, existing approaches usually reject and/or ignore uncertain data that correspond to software classes (i.e. dataset instances) with uncertain labels. Throwing away and/or disregarding the uncertainty factor could considerably degrade the detection/identification process effectiveness. From a solution approach viewpoint, there is no work in the literature that proposed a method that is able to detect and/or identify code smells while preserving the uncertainty aspect. Objective: The main goal of our research work is to handle the uncertainty factor, issued from human experts, in detecting and/or identifying code smells by proposing an evolutionary approach that is able to deal with anti-patterns classification with uncertain labels. Method: We suggest Bi-ADIPOK, as an effective search-based tool that is capable to tackle the previously mentioned challenge for both detection and identification cases. The proposed method corresponds to an EA (Evolutionary Algorithm) that optimizes a set of detectors encoded as PK-NNs (Possibilistic K-nearest neighbors) based on a bi-level hierarchy, in which the upper level role consists on finding the optimal PK-NNs parameters, while the lower level one is to generate the PK-NNs. A newly fitness function has been proposed fitness function PomAURPC-OVA_dist (Possibilistic modified Area Under Recall Precision Curve One-Versus-All_distance, abbreviated PAURPC_d in this paper). Bi-ADIPOK is able to deal with label uncertainty using some concepts stemming from the Possibility Theory. Furthermore, the PomAURPC-OVA_dist is capable to process the uncertainty issue even with imbalanced data. We notice that Bi-ADIPOK is first built and then validated using a possibilistic base of smell examples that simulates and mimics the subjectivity of software engineers opinions. Results: The statistical analysis of the obtained results on a set of comparative experiments with respect to four relevant state-of-the-art methods shows the merits of our proposal. The obtained detection results demonstrate that, for the uncertain environment, the PomAURPC-OVA_dist of Bi-ADIPOK ranges between 0.902 and 0.932 and its IAC lies between 0.9108 and 0.9407, while for the certain environment, the PomAURPC-OVA_dist lies between 0.928 and 0.955 and the IAC ranges between 0.9477 and 0.9622. Similarly, the identification results, for the uncertain environment, indicate that the PomAURPC-OVA_dist of Bi-ADIPOK varies between 0.8576 and 0.9273 and its IAC is between 0.8693 and 0.9318. For the certain environment, the PomAURPC-OVA_dist lies between 0.8613 and 0.9351 and the IAC values are between 0.8672 and 0.9476. With uncertain data, Bi-ADIPOK can find 35% more code smells than the second best approach (i.e., BLOP). Furthermore, Bi-ADIPOK has succeeded to reduce the number of false alarms (i.e., misclassified smelly instances) by 12%. In addition, our proposed approach can identify 43% more smell types than BLOP and reduces the number of false alarms by 32%. The same results have been obtained for the certain environment, demonstrating Bi-ADIPOK's ability to deal with such environment

    Landmine detection using semi-supervised learning.

    Get PDF
    Landmine detection is imperative for the preservation of both military and civilian lives. While landmines are easy to place, they are relatively difficult to remove. The classic method of detecting landmines was by using metal-detectors. However, many present-day landmines are composed of little to no metal, necessitating the use of additional technologies. One of the most successful and widely employed technologies is Ground Penetrating Radar (GPR). In order to maximize efficiency of GPR-based landmine detection and minimize wasted effort caused by false alarms, intelligent detection methods such as machine learning are used. Many sophisticated algorithms are developed and employed to accomplish this. One such successful algorithm is K Nearest Neighbors (KNN) classification. Most of these algorithms, including KNN, are based on supervised learning, which requires labeling of known data. This process can be tedious. Semi-supervised learning leverages both labeled and unlabeled data in the training process, alleviating over-dependency on labeling. Semi-supervised learning has several advantages over supervised learning. For example, it applies well to large datasets because it uses the topology of unlabeled data to classify test data. Also, by allowing unlabeled data to influence classification, one set of training data can be adopted into varying test environments. In this thesis, we explore a graph-based learning method known as Label Propagation as an alternative classifier to KNN classification, and validate its use on vehicle-mounted and handheld GPR systems

    Early detection of health changes in the elderly using in-home multi-sensor data streams

    Get PDF
    The rapid aging of the population worldwide requires increased attention from health care providers and the entire society. For the elderly to live independently, many health issues related to old age, such as frailty and risk of falling, need increased attention and monitoring. When monitoring daily routines for older adults, it is desirable to detect the early signs of health changes before serious health events, such as hospitalizations, happen, so that timely and adequate preventive care may be provided. By deploying multi-sensor systems in homes of the elderly, we can track trajectories of daily behaviors in a feature space defined using the sensor data. In this work, we investigate a methodology for learning data distribution from streaming data and tracking the evolution of the behavior trajectories over long periods (years) using high dimensional streaming clustering and provide very early indicators of changes in health. If we assume that habitual behaviors correspond to clusters in feature space and diseases produce a change in behavior, albeit not highly specific, tracking trajectory deviations can provide hints of early illness. Retrospectively, we visualize the streaming clustering results and track how the behavior clusters evolve in feature space with the help of two dimension-reduction algorithms, Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). Moreover, our tracking algorithm in the original high dimensional feature space generates early health warning alerts if a negative trend is detected in the behavior trajectory. We validated our algorithm on synthetic data, real-world data and tested it on a pilot dataset of four TigerPlace residents monitored with a collection of motion, bed, and depth sensors over ten years. We used the TigerPlace electronic health records (EHR) to understand the residents' behavior patterns and to evaluate and explain the health warnings generated by our algorithm. The results obtained on the TigerPlace dataset show that most of the warnings produced by our algorithm can be linked to health events documented in the EHR, providing strong support for a prospective deployment of the approach.Includes bibliographical references

    Context dependent spectral unmixing.

    Get PDF
    A hyperspectral unmixing algorithm that finds multiple sets of endmembers is proposed. The algorithm, called Context Dependent Spectral Unmixing (CDSU), is a local approach that adapts the unmixing to different regions of the spectral space. It is based on a novel function that combines context identification and unmixing. This joint objective function models contexts as compact clusters and uses the linear mixing model as the basis for unmixing. Several variations of the CDSU, that provide additional desirable features, are also proposed. First, the Context Dependent Spectral unmixing using the Mahalanobis Distance (CDSUM) offers the advantage of identifying non-spherical clusters in the high dimensional spectral space. Second, the Cluster and Proportion Constrained Multi-Model Unmixing (CC-MMU and PC-MMU) algorithms use partial supervision information, in the form of cluster or proportion constraints, to guide the search process and narrow the space of possible solutions. The supervision information could be provided by an expert, generated by analyzing the consensus of multiple unmixing algorithms, or extracted from co-located data from a different sensor. Third, the Robust Context Dependent Spectral Unmixing (RCDSU) introduces possibilistic memberships into the objective function to reduce the effect of noise and outliers in the data. Finally, the Unsupervised Robust Context Dependent Spectral Unmixing (U-RCDSU) algorithm learns the optimal number of contexts in an unsupervised way. The performance of each algorithm is evaluated using synthetic and real data. We show that the proposed methods can identify meaningful and coherent contexts, and appropriate endmembers within each context. The second main contribution of this thesis is consensus unmixing. This approach exploits the diversity and similarity of the large number of existing unmixing algorithms to identify an accurate and consistent set of endmembers in the data. We run multiple unmixing algorithms using different parameters, and combine the resulting unmixing ensemble using consensus analysis. The extracted endmembers will be the ones that have a consensus among the multiple runs. The third main contribution consists of developing subpixel target detectors that rely on the proposed CDSU algorithms to adapt target detection algorithms to different contexts. A local detection statistic is computed for each context and then all scores are combined to yield a final detection score. The context dependent unmixing provides a better background description and limits target leakage, which are two essential properties for target detection algorithms
    corecore