43 research outputs found

    Image annotation and retrieval based on multi-modal feature clustering and similarity propagation.

    Get PDF
    The performance of content-based image retrieval systems has proved to be inherently constrained by the used low level features, and cannot give satisfactory results when the user\u27s high level concepts cannot be expressed by low level features. In an attempt to bridge this semantic gap, recent approaches started integrating both low level-visual features and high-level textual keywords. Unfortunately, manual image annotation is a tedious process and may not be possible for large image databases. In this thesis we propose a system for image retrieval that has three mains components. The first component of our system consists of a novel possibilistic clustering and feature weighting algorithm based on robust modeling of the Generalized Dirichlet (GD) finite mixture. Robust estimation of the mixture model parameters is achieved by incorporating two complementary types of membership degrees. The first one is a posterior probability that indicates the degree to which a point fits the estimated distribution. The second membership represents the degree of typicality and is used to indentify and discard noise points. Robustness to noisy and irrelevant features is achieved by transforming the data to make the features independent and follow Beta distribution, and learning optimal relevance weight for each feature subset within each cluster. We extend our algorithm to find the optimal number of clusters in an unsupervised and efficient way by exploiting some properties of the possibilistic membership function. We also outline a semi-supervised version of the proposed algorithm. In the second component of our system consists of a novel approach to unsupervised image annotation. Our approach is based on: (i) the proposed semi-supervised possibilistic clustering; (ii) a greedy selection and joining algorithm (GSJ); (iii) Bayes rule; and (iv) a probabilistic model that is based on possibilistic memebership degrees to annotate an image. The third component of the proposed system consists of an image retrieval framework based on multi-modal similarity propagation. The proposed framework is designed to deal with two data modalities: low-level visual features and high-level textual keywords generated by our proposed image annotation algorithm. The multi-modal similarity propagation system exploits the mutual reinforcement of relational data and results in a nonlinear combination of the different modalities. Specifically, it is used to learn the semantic similarities between images by leveraging the relationships between features from the different modalities. The proposed image annotation and retrieval approaches are implemented and tested with a standard benchmark dataset. We show the effectiveness of our clustering algorithm to handle high dimensional and noisy data. We compare our proposed image annotation approach to three state-of-the-art methods and demonstrate the effectiveness of the proposed image retrieval system

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Positive Data Clustering based on Generalized Inverted Dirichlet Mixture Model

    Get PDF
    Recent advances in processing and networking capabilities of computers have caused an accumulation of immense amounts of multimodal multimedia data (image, text, video). These data are generally presented as high-dimensional vectors of features. The availability of these highdimensional data sets has provided the input to a large variety of statistical learning applications including clustering, classification, feature selection, outlier detection and density estimation. In this context, a finite mixture offers a formal approach to clustering and a powerful tool to tackle the problem of data modeling. A mixture model assumes that the data is generated by a set of parametric probability distributions. The main learning process of a mixture model consists of the following two parts: parameter estimation and model selection (estimation the number of components). In addition, other issues may be considered during the learning process of mixture models such as the: a) feature selection and b) outlier detection. The main objective of this thesis is to work with different kinds of estimation criteria and to incorporate those challenges into a single framework. The first contribution of this thesis is to propose a statistical framework which can tackle the problem of parameter estimation, model selection, feature selection, and outlier rejection in a unified model. We propose to use feature saliency and introduce an expectation-maximization (EM) algorithm for the estimation of the Generalized Inverted Dirichlet (GID) mixture model. By using the Minimum Message Length (MML), we can identify how much each feature contributes to our model as well as determine the number of components. The presence of outliers is an added challenge and is handled by incorporating an auxiliary outlier component, to which we associate a uniform density. Experimental results on synthetic data, as well as real world applications involving visual scenes and object classification, indicates that the proposed approach was promising, even though low-dimensional representation of the data was applied. In addition, it showed the importance of embedding an outlier component to the proposed model. EM learning suffers from significant drawbacks. In order to overcome those drawbacks, a learning approach using a Bayesian framework is proposed as our second contribution. This learning is based on the estimation of the parameters posteriors and by considering the prior knowledge about these parameters. Calculation of the posterior distribution of each parameter in the model is done by using Markov chain Monte Carlo (MCMC) simulation methods - namely, the Gibbs sampling and the Metropolis- Hastings methods. The Bayesian Information Criterion (BIC) was used for model selection. The proposed model was validated on object classification and forgery detection applications. For the first two contributions, we developed a finite GID mixture. However, in the third contribution, we propose an infinite GID mixture model. The proposed model simutaneously tackles the clustering and feature selection problems. The proposed learning model is based on Gibbs sampling. The effectiveness of the proposed method is shown using image categorization application. Our last contribution in this thesis is another fully Bayesian approach for a finite GID mixture learning model using the Reversible Jump Markov Chain Monte Carlo (RJMCMC) technique. The proposed algorithm allows for the simultaneously handling of the model selection and parameter estimation for high dimensional data. The merits of this approach are investigated using synthetic data, and data generated from a challenging namely object detection

    Clustering of multiple instance data.

    Get PDF
    An emergent area of research in machine learning that aims to develop tools to analyze data where objects have multiple representations is Multiple Instance Learning (MIL). In MIL, each object is represented by a bag that includes a collection of feature vectors called instances. A bag is positive if it contains at least one positive instance, and negative if no instances are positive. One of the main objectives in MIL is to identify a region in the instance feature space with high correlation to instances from positive bags and low correlation to instances from negative bags -- this region is referred to as a target concept (TC). Existing methods either only identify a single target concept, do not provide a mechanism for selecting the appropriate number of target concepts, or do not provide a flexible representation for target concept memberships. Thus, they are not suitable to handle data with large intra-class variation. In this dissertation we propose new algorithms that learn multiple target concepts simultaneously. The proposed algorithms combine concepts from data clustering and multiple instance learning. In particular, we propose crisp, fuzzy, and possibilistic variations of the Multi-target concept Diverse Density (MDD) metric, along with three algorithms to optimize them. Each algorithm relies on an alternating optimization strategy that iteratively refines concept assignments, locations, and scales until it converges to an optimal set of target concepts. We also demonstrate how the possibilistic MDD metric can be used to select the appropriate number of target concepts for a dataset. Lastly, we propose the construction of classifiers based on embedded feature space theory to use our target concepts to predict the label of prospective MIL data. The proposed algorithms are implemented, tested, and validated through the analysis of multiple synthetic and real-world data. We first demonstrate that our algorithms can detect multiple target concepts reliably, and are robust to many generative data parameters. We then demonstrate how our approach can be used in the application of Buried Explosive Object (BEO) detection to locate distinct target concepts corresponding to signatures of varying BEO types. We also demonstrate that our classifier strategies can perform competitively with other well-established embedded space approaches in classification of Benchmark MIL data

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio
    corecore