459 research outputs found

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    Optimized explicit Runge-Kutta schemes for the spectral difference method applied to wave propagation problems

    Full text link
    Explicit Runge-Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretization on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge-Kutta schemes available in literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.Comment: 37 pages, 3 pages of appendi

    High Order Asymptotic Preserving DG-IMEX Schemes for Discrete-Velocity Kinetic Equations in a Diffusive Scaling

    Full text link
    In this paper, we develop a family of high order asymptotic preserving schemes for some discrete-velocity kinetic equations under a diffusive scaling, that in the asymptotic limit lead to macroscopic models such as the heat equation, the porous media equation, the advection-diffusion equation, and the viscous Burgers equation. Our approach is based on the micro-macro reformulation of the kinetic equation which involves a natural decomposition of the equation to the equilibrium and non-equilibrium parts. To achieve high order accuracy and uniform stability as well as to capture the correct asymptotic limit, two new ingredients are employed in the proposed methods: discontinuous Galerkin spatial discretization of arbitrary order of accuracy with suitable numerical fluxes; high order globally stiffly accurate implicit-explicit Runge-Kutta scheme in time equipped with a properly chosen implicit-explicit strategy. Formal asymptotic analysis shows that the proposed scheme in the limit of epsilon -> 0 is an explicit, consistent and high order discretization for the limiting equation. Numerical results are presented to demonstrate the stability and high order accuracy of the proposed schemes together with their performance in the limit

    Free-energy-dissipative schemes for the Oldroyd-B model

    Get PDF
    In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman, which have been reported to be numerically more stable than discretizations of the usual formulation in some benchmark problems. Our analysis gives some tracks to understand these numerical observations

    Positivity preservation of implicit discretizations of the advection equation

    Get PDF
    We analyze, from the viewpoint of positivity preservation, certain discretizations of a fundamental partial differential equation, the one-dimensional advection equation with periodic boundary condition. The full discretization is obtained by coupling a finite difference spatial semidiscretization (the second- and some higher-order centered difference schemes, or the Fourier spectral collocation method) with an arbitrary _x0012_θ-method in time (including the forward and backward Euler methods, and a second-order method by choosing _x0012_ θ ∈ [0, 1] suitably). The full discretization generates a two-parameter family of circulant matrices M ∈ ℝ m_x0002_xm , where each matrix entry is a rational function in θ and _x0017_ν . Here, _x0017_ν denotes the CFL number, being proportional to the ratio between the temporal and spatial discretization step sizes. The entrywise non-negativity of the matrix M---which is equivalent to the positivity preservation of the fully discrete scheme---is investigated via discrete Fourier analysis and also by solving some low-order parametric linear recursions. We find that positivity preservation of the fully discrete system is impossible if the number of spatial grid points m is even. However, it turns out that positivity preservation of the fully discrete system is recovered for odd values of m provided that θ ≥ 1/2 and ν are chosen suitably. These results are interesting since the systems of ordinary differential equations obtained via the spatial semi-discretizations studied are not positivity preserving

    Energy-conserving discontinuous Galerkin methods for the Vlasov-Amp\`{e}re system

    Full text link
    In this paper, we propose energy-conserving numerical schemes for the Vlasov-Amp\`{e}re (VA) systems. The VA system is a model used to describe the evolution of probability density function of charged particles under self consistent electric field in plasmas. It conserves many physical quantities, including the total energy which is comprised of the kinetic and electric energy. Unlike the total particle number conservation, the total energy conservation is challenging to achieve. For simulations in longer time ranges, negligence of this fact could cause unphysical results, such as plasma self heating or cooling. In this paper, we develop the first Eulerian solvers that can preserve fully discrete total energy conservation. The main components of our solvers include explicit or implicit energy-conserving temporal discretizations, an energy-conserving operator splitting for the VA equation and discontinuous Galerkin finite element methods for the spatial discretizations. We validate our schemes by rigorous derivations and benchmark numerical examples such as Landau damping, two-stream instability and bump-on-tail instability
    corecore