2,217 research outputs found

    The p-Laplace equation in domains with multiple crack section via pencil operators

    Get PDF
    The p-Laplace equation \n \cdot (|\n u|^n \n u)=0 \whereA n>0, in a bounded domain \O \subset \re^2, with inhomogeneous Dirichlet conditions on the smooth boundary \p \O is considered. In addition, there is a finite collection of curves \Gamma = \Gamma_1\cup...\cup\Gamma_m \subset \O, \quad \{on which we assume homogeneous Dirichlet boundary conditions} \quad u=0, modeling a multiple crack formation, focusing at the origin 0 \in \O. This makes the above quasilinear elliptic problem overdetermined. Possible types of the behaviour of solution u(x,y)u(x,y) at the tip 0 of such admissible multiple cracks, being a "singularity" point, are described, on the basis of blow-up scaling techniques and a "nonlinear eigenvalue problem". Typical types of admissible cracks are shown to be governed by nodal sets of a countable family of nonlinear eigenfunctions, which are obtained via branching from harmonic polynomials that occur for n=0n=0. Using a combination of analytic and numerical methods, saddle-node bifurcations in nn are shown to occur for those nonlinear eigenvalues/eigenfunctions.Comment: arXiv admin note: substantial text overlap with arXiv:1310.065

    Variational bound on energy dissipation in plane Couette flow

    Full text link
    We present numerical solutions to the extended Doering-Constantin variational principle for upper bounds on the energy dissipation rate in turbulent plane Couette flow. Using the compound matrix technique in order to reformulate this principle's spectral constraint, we derive a system of equations that is amenable to numerical treatment in the entire range from low to asymptotically high Reynolds numbers. Our variational bound exhibits a minimum at intermediate Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a consequence of a bifurcation of the minimizing wavenumbers, there exist two length scales that determine the optimal upper bound: the effective width of the variational profile's boundary segments, and the extension of their flat interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one uuencoded .tar.gz file from [email protected]

    A survey on stationary problems, Green's functions and spectrum of Sturm–Liouville problem with nonlocal boundary conditions

    Get PDF
    In this paper, we present a survey of recent results on the Green's functions and on spectrum for stationary problems with nonlocal boundary conditions. Results of Lithuanian mathematicians in the field of differential and numerical problems with nonlocal boundary conditions are described. *The research was partially supported by the Research Council of Lithuania (grant No. MIP-047/2014)
    corecore