376,437 research outputs found

    Truthful Assignment without Money

    Full text link
    We study the design of truthful mechanisms that do not use payments for the generalized assignment problem (GAP) and its variants. An instance of the GAP consists of a bipartite graph with jobs on one side and machines on the other. Machines have capacities and edges have values and sizes; the goal is to construct a welfare maximizing feasible assignment. In our model of private valuations, motivated by impossibility results, the value and sizes on all job-machine pairs are public information; however, whether an edge exists or not in the bipartite graph is a job's private information. We study several variants of the GAP starting with matching. For the unweighted version, we give an optimal strategyproof mechanism; for maximum weight bipartite matching, however, we show give a 2-approximate strategyproof mechanism and show by a matching lowerbound that this is optimal. Next we study knapsack-like problems, which are APX-hard. For these problems, we develop a general LP-based technique that extends the ideas of Lavi and Swamy to reduce designing a truthful mechanism without money to designing such a mechanism for the fractional version of the problem, at a loss of a factor equal to the integrality gap in the approximation ratio. We use this technique to obtain strategyproof mechanisms with constant approximation ratios for these problems. We then design an O(log n)-approximate strategyproof mechanism for the GAP by reducing, with logarithmic loss in the approximation, to our solution for the value-invariant GAP. Our technique may be of independent interest for designing truthful mechanisms without money for other LP-based problems.Comment: Extended abstract appears in the 11th ACM Conference on Electronic Commerce (EC), 201

    A Survey on Approximation Mechanism Design without Money for Facility Games

    Full text link
    In a facility game one or more facilities are placed in a metric space to serve a set of selfish agents whose addresses are their private information. In a classical facility game, each agent wants to be as close to a facility as possible, and the cost of an agent can be defined as the distance between her location and the closest facility. In an obnoxious facility game, each agent wants to be far away from all facilities, and her utility is the distance from her location to the facility set. The objective of each agent is to minimize her cost or maximize her utility. An agent may lie if, by doing so, more benefit can be obtained. We are interested in social choice mechanisms that do not utilize payments. The game designer aims at a mechanism that is strategy-proof, in the sense that any agent cannot benefit by misreporting her address, or, even better, group strategy-proof, in the sense that any coalition of agents cannot all benefit by lying. Meanwhile, it is desirable to have the mechanism to be approximately optimal with respect to a chosen objective function. Several models for such approximation mechanism design without money for facility games have been proposed. In this paper we briefly review these models and related results for both deterministic and randomized mechanisms, and meanwhile we present a general framework for approximation mechanism design without money for facility games
    • …
    corecore