75,884 research outputs found

    Positive Periodic Solutions of Singular Systems for First Order Difference Equations

    Full text link

    Positive periodic solutions of singular systems

    Get PDF
    The existence and multiplicity of positive periodic solutions for second order non-autonomous singular dynamical systems are established with superlinearity or sublinearity assumptions at infinity for an appropriately chosen parameter. Our results provide a unified treatment for the problem and significantly improve several results in the literature. The proof of our results is based on the Krasnoselskii fixed point theorem in a cone.Comment: Journal of Differential Equations, 201

    Non-trivial, non-negative periodic solutions of a system of singular-degenerate parabolic equations with nonlocal terms

    Get PDF
    We study the existence of non-trivial, non-negative periodic solutions for systems of singular-degenerate parabolic equations with nonlocal terms and satisfying Dirichlet boundary conditions. The method employed in this paper is based on the Leray-Schauder topological degree theory. However, verifying the conditions under which such a theory applies is more involved due to the presence of the singularity. The system can be regarded as a possible model of the interactions of two biological species sharing the same isolated territory, and our results give conditions that ensure the coexistence of the two species.Comment: 39 page

    Anomalous Thermostat and Intraband Discrete Breathers

    Full text link
    We investigate the dynamics of a macroscopic system which consists of an anharmonic subsystem embedded in an arbitrary harmonic lattice, including quenched disorder. Elimination of the harmonic degrees of freedom leads to a nonlinear Langevin equation for the anharmonic coordinates. For zero temperature, we prove that the support of the Fourier transform of the memory kernel and of the time averaged velocity-velocity correlations functions of the anharmonic system can not overlap. As a consequence, the asymptotic solutions can be constant, periodic,quasiperiodic or almost periodic, and possibly weakly chaotic. For a sinusoidal trajectory with frequency Ω\Omega we find that the energy ETE_T transferred to the harmonic system up to time TT is proportional to TαT^{\alpha}. If Ω\Omega equals one of the phonon frequencies ων\omega_\nu, it is α=2\alpha=2. We prove that there is a full measure set such that for Ω\Omega in this set it is α=0\alpha=0, i.e. there is no energy dissipation. Under certain conditions there exists a zero measure set such that for Ωthissetthedissipationrateisnonzeroandmaybesubdissipative\Omega \in this set the dissipation rate is nonzero and may be subdissipative (0 \leq \alpha < 1)orsuperdissipative or superdissipative (1 <\alpha \leq 2).Consequently,theharmonicbathdoesactasananomalousthermostat.Intrabanddiscretebreathersaresuchsolutionswhichdonotrelax.Weproveforarbitraryanharmonicityandsmallbutfinitecouplingthatintrabanddiscretebreatherswithfrequency. Consequently, the harmonic bath does act as an anomalous thermostat. Intraband discrete breathers are such solutions which do not relax. We prove for arbitrary anharmonicity and small but finite coupling that intraband discrete breathers with frequency \Omegaexistforall exist for all \OmegainaCantorset in a Cantor set \mathcal{C}(k)offiniteLebesguemeasure.Thisisachievedbyestimatingthecontributionofsmalldenominatorsappearinginthememorykernel.For of finite Lebesgue measure. This is achieved by estimating the contribution of small denominators appearing in the memory kernel. For \Omega\in\mathcal{C}(k)thesmalldenominatorsdonotleadtodivergenciessuchthatthiskernelisasmoothandboundedfunctionin the small denominators do not lead to divergencies such that this kernel is a smooth and bounded function in t$.Comment: Physica D in prin

    Morse theory on spaces of braids and Lagrangian dynamics

    Get PDF
    In the first half of the paper we construct a Morse-type theory on certain spaces of braid diagrams. We define a topological invariant of closed positive braids which is correlated with the existence of invariant sets of parabolic flows defined on discretized braid spaces. Parabolic flows, a type of one-dimensional lattice dynamics, evolve singular braid diagrams in such a way as to decrease their topological complexity; algebraic lengths decrease monotonically. This topological invariant is derived from a Morse-Conley homotopy index and provides a gloablization of `lap number' techniques used in scalar parabolic PDEs. In the second half of the paper we apply this technology to second order Lagrangians via a discrete formulation of the variational problem. This culminates in a very general forcing theorem for the existence of infinitely many braid classes of closed orbits.Comment: Revised version: numerous changes in exposition. Slight modification of two proofs and one definition; 55 pages, 20 figure

    On the detuned 2:4 resonance

    Get PDF
    We consider families of Hamiltonian systems in two degrees of freedom with an equilibrium in 1:2 resonance. Under detuning, this "Fermi resonance" typically leads to normal modes losing their stability through period-doubling bifurcations. For cubic potentials this concerns the short axial orbits and in galactic dynamics the resulting stable periodic orbits are called "banana" orbits. Galactic potentials are symmetric with respect to the co-ordinate planes whence the potential -- and the normal form -- both have no cubic terms. This Z2×Z2\mathbb{Z}_2 \times \mathbb{Z}_2-symmetry turns the 1:2 resonance into a higher order resonance and one therefore also speaks of the 2:4 resonance. In this paper we study the 2:4 resonance in its own right, not restricted to natural Hamiltonian systems where H=T+VH = T + V would consist of kinetic and (positional) potential energy. The short axial orbit then turns out to be dynamically stable everywhere except at a simultaneous bifurcation of banana and "anti-banana" orbits, while it is now the long axial orbit that loses and regains stability through two successive period-doubling bifurcations.Comment: 31 pages, 7 figures: On line first on Journal of Nonlinear Science (2020

    On periodic solutions of 2-periodic Lyness difference equations

    Get PDF
    We study the existence of periodic solutions of the non--autonomous periodic Lyness' recurrence u_{n+2}=(a_n+u_{n+1})/u_n, where {a_n} is a cycle with positive values a,b and with positive initial conditions. It is known that for a=b=1 all the sequences generated by this recurrence are 5-periodic. We prove that for each pair (a,b) different from (1,1) there are infinitely many initial conditions giving rise to periodic sequences, and that the family of recurrences have almost all the even periods. If a is not equal to b, then any odd period, except 1, appears.Comment: 27 pages; 1 figur
    corecore