32 research outputs found

    Extremal systems of points and numerical integration on the sphere

    Get PDF
    This paper considers extremal systems of points on the unit sphere S r ⊆ R r+1 , related problems of numerical integration and geometrical properties of extremal systems. Extremal systems are systems of d n = dim P n points, where P n is the space of spherical polynomials of degree at most n, which maximize the determinant of an interpolation matrix. Extremal systems for S 2 of degrees up to 191 (36,864 points) provide well distributed points, and are found to yield interpolatory cubature rules with positive weights. We consider the worst case cubature error in a certain Hilbert space and its relation to a generalized discrepancy. We also consider geometrical properties such as the minimal geodesic distance between points and the mesh norm. The known theoretical properties fall well short of those suggested by the numerical experiments

    Higer-Order Intergral Equation Methods in Computational Electromagnetics

    Get PDF

    Adaptive boundary element methods with convergence rates

    Full text link
    This paper presents adaptive boundary element methods for positive, negative, as well as zero order operator equations, together with proofs that they converge at certain rates. The convergence rates are quasi-optimal in a certain sense under mild assumptions that are analogous to what is typically assumed in the theory of adaptive finite element methods. In particular, no saturation-type assumption is used. The main ingredients of the proof that constitute new findings are some results on a posteriori error estimates for boundary element methods, and an inverse-type inequality involving boundary integral operators on locally refined finite element spaces.Comment: 48 pages. A journal version. The previous version (v3) is a bit lengthie
    corecore