2,477 research outputs found

    Lower Bounds for (Non-Monotone) Comparator Circuits

    Get PDF
    Comparator circuits are a natural circuit model for studying the concept of bounded fan-out computations, which intuitively corresponds to whether or not a computational model can make "copies" of intermediate computational steps. Comparator circuits are believed to be weaker than general Boolean circuits, but they can simulate Branching Programs and Boolean formulas. In this paper we prove the first superlinear lower bounds in the general (non-monotone) version of this model for an explicitly defined function. More precisely, we prove that the n-bit Element Distinctness function requires ?((n/ log n)^(3/2)) size comparator circuits

    Proof complexity of positive branching programs

    Get PDF
    We investigate the proof complexity of systems based on positive branching programs, i.e. non-deterministic branching programs (NBPs) where, for any 0-transition between two nodes, there is also a 1-transition. Positive NBPs compute monotone Boolean functions, just like negation-free circuits or formulas, but constitute a positive version of (non-uniform) NL, rather than P or NC1, respectively. The proof complexity of NBPs was investigated in previous work by Buss, Das and Knop, using extension variables to represent the dag-structure, over a language of (non-deterministic) decision trees, yielding the system eLNDT. Our system eLNDT+ is obtained by restricting their systems to a positive syntax, similarly to how the 'monotone sequent calculus' MLK is obtained from the usual sequent calculus LK by restricting to negation-free formulas. Our main result is that eLNDT+ polynomially simulates eLNDT over positive sequents. Our proof method is inspired by a similar result for MLK by Atserias, Galesi and Pudl\'ak, that was recently improved to a bona fide polynomial simulation via works of Je\v{r}\'abek and Buss, Kabanets, Kolokolova and Kouck\'y. Along the way we formalise several properties of counting functions within eLNDT+ by polynomial-size proofs and, as a case study, give explicit polynomial-size poofs of the propositional pigeonhole principle.Comment: 31 pages, 5 figure

    Patching Colors with Tensors

    Get PDF

    Model Checking CTL is Almost Always Inherently Sequential

    Get PDF
    The model checking problem for CTL is known to be P-complete (Clarke, Emerson, and Sistla (1986), see Schnoebelen (2002)). We consider fragments of CTL obtained by restricting the use of temporal modalities or the use of negations---restrictions already studied for LTL by Sistla and Clarke (1985) and Markey (2004). For all these fragments, except for the trivial case without any temporal operator, we systematically prove model checking to be either inherently sequential (P-complete) or very efficiently parallelizable (LOGCFL-complete). For most fragments, however, model checking for CTL is already P-complete. Hence our results indicate that, in cases where the combined complexity is of relevance, approaching CTL model checking by parallelism cannot be expected to result in any significant speedup. We also completely determine the complexity of the model checking problem for all fragments of the extensions ECTL, CTL+, and ECTL+

    Arithmetic Circuit Lower Bounds via MaxRank

    Full text link
    We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results : As our main result, we prove that any homogeneous depth-3 circuit for computing the product of dd matrices of dimension n×nn \times n requires Ω(nd1/2d)\Omega(n^{d-1}/2^d) size. This improves the lower bounds by Nisan and Wigderson(1995) when d=ω(1)d=\omega(1). There is an explicit polynomial on nn variables and degree at most n2\frac{n}{2} for which any depth-3 circuit CC of product dimension at most n10\frac{n}{10} (dimension of the space of affine forms feeding into each product gate) requires size 2Ω(n)2^{\Omega(n)}. This generalizes the lower bounds against diagonal circuits proved by Saxena(2007). Diagonal circuits are of product dimension 1. We prove a nΩ(logn)n^{\Omega(\log n)} lower bound on the size of product-sparse formulas. By definition, any multilinear formula is a product-sparse formula. Thus, our result extends the known super-polynomial lower bounds on the size of multilinear formulas by Raz(2006). We prove a 2Ω(n)2^{\Omega(n)} lower bound on the size of partitioned arithmetic branching programs. This result extends the known exponential lower bound on the size of ordered arithmetic branching programs given by Jansen(2008).Comment: 22 page

    Software Engineering and Complexity in Effective Algebraic Geometry

    Full text link
    We introduce the notion of a robust parameterized arithmetic circuit for the evaluation of algebraic families of multivariate polynomials. Based on this notion, we present a computation model, adapted to Scientific Computing, which captures all known branching parsimonious symbolic algorithms in effective Algebraic Geometry. We justify this model by arguments from Software Engineering. Finally we exhibit a class of simple elimination problems of effective Algebraic Geometry which require exponential time to be solved by branching parsimonious algorithms of our computation model.Comment: 70 pages. arXiv admin note: substantial text overlap with arXiv:1201.434

    Discovering the roots: Uniform closure results for algebraic classes under factoring

    Full text link
    Newton iteration (NI) is an almost 350 years old recursive formula that approximates a simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously. In this form, the process yields a better circuit complexity in the case when the number of roots rr is small but the multiplicities are exponentially large. Our method sets up a linear system in rr unknowns and iteratively builds the roots as formal power series. For an algebraic circuit f(x1,,xn)f(x_1,\ldots,x_n) of size ss we prove that each factor has size at most a polynomial in: ss and the degree of the squarefree part of ff. Consequently, if f1f_1 is a 2Ω(n)2^{\Omega(n)}-hard polynomial then any nonzero multiple ifiei\prod_{i} f_i^{e_i} is equally hard for arbitrary positive eie_i's, assuming that ideg(fi)\sum_i \text{deg}(f_i) is at most 2O(n)2^{O(n)}. It is an old open question whether the class of poly(nn)-sized formulas (resp. algebraic branching programs) is closed under factoring. We show that given a polynomial ff of degree nO(1)n^{O(1)} and formula (resp. ABP) size nO(logn)n^{O(\log n)} we can find a similar size formula (resp. ABP) factor in randomized poly(nlognn^{\log n})-time. Consequently, if determinant requires nΩ(logn)n^{\Omega(\log n)} size formula, then the same can be said about any of its nonzero multiples. As part of our proofs, we identify a new property of multivariate polynomial factorization. We show that under a random linear transformation τ\tau, f(τx)f(\tau\overline{x}) completely factors via power series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with allRootsNI are the techniques that help us make progress towards the old open problems, supplementing the large body of classical results and concepts in algebraic circuit factorization (eg. Zassenhaus, J.NT 1969, Kaltofen, STOC 1985-7 \& Burgisser, FOCS 2001).Comment: 33 Pages, No figure
    corecore