45,706 research outputs found

    The sign of the Green function of an n-th order linear boundary value problem

    Full text link
    [EN] This paper provides results on the sign of the Green function (and its partial derivatives) of ann-th order boundary value problem subject to a wide set of homogeneous two-point boundary conditions. The dependence of the absolute value of the Green function and some of its partial derivatives with respect to the extremes where the boundary conditions are set is also assessed.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Almenar, P.; Jódar Sánchez, LA. (2020). The sign of the Green function of an n-th order linear boundary value problem. Mathematics. 8(5):1-22. https://doi.org/10.3390/math8050673S12285Butler, G. ., & Erbe, L. . (1983). Integral comparison theorems and extremal points for linear differential equations. Journal of Differential Equations, 47(2), 214-226. doi:10.1016/0022-0396(83)90034-7Peterson, A. C. (1979). Green’s functions for focal type boundary value problems. Rocky Mountain Journal of Mathematics, 9(4). doi:10.1216/rmj-1979-9-4-721Peterson, A. C. (1980). Focal Green’s functions for fourth-order differential equations. Journal of Mathematical Analysis and Applications, 75(2), 602-610. doi:10.1016/0022-247x(80)90104-3Elias, U. (1980). Green’s functions for a non-disconjugate differential operator. Journal of Differential Equations, 37(3), 318-350. doi:10.1016/0022-0396(80)90103-5Nehari, Z. (1967). Disconjugate linear differential operators. Transactions of the American Mathematical Society, 129(3), 500-500. doi:10.1090/s0002-9947-1967-0219781-0Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-kEloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003Almenar, P., & Jódar, L. (2015). Solvability ofNth Order Linear Boundary Value Problems. International Journal of Differential Equations, 2015, 1-19. doi:10.1155/2015/230405Almenar, P., & Jódar, L. (2016). Improving Results on Solvability of a Class ofnth-Order Linear Boundary Value Problems. International Journal of Differential Equations, 2016, 1-10. doi:10.1155/2016/3750530Almenar, P., & Jodar, L. (2017). SOLVABILITY OF A CLASS OF N -TH ORDER LINEAR FOCAL PROBLEMS. Mathematical Modelling and Analysis, 22(4), 528-547. doi:10.3846/13926292.2017.1329757Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6Webb, J. R. L. (2017). New fixed point index results and nonlinear boundary value problems. Bulletin of the London Mathematical Society, 49(3), 534-547. doi:10.1112/blms.12055Jiang, D., & Yuan, C. (2010). The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Analysis: Theory, Methods & Applications, 72(2), 710-719. doi:10.1016/j.na.2009.07.012Wang, Y., & Liu, L. (2017). Positive properties of the Green function for two-term fractional differential equations and its application. The Journal of Nonlinear Sciences and Applications, 10(04), 2094-2102. doi:10.22436/jnsa.010.04.63Zhang, L., & Tian, H. (2017). Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations. Advances in Difference Equations, 2017(1). doi:10.1186/s13662-017-1157-7Wang, Y. (2020). The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications. Advances in Difference Equations, 2020(1). doi:10.1186/s13662-020-02549-

    A discrete least squares collocation method for two-dimensional nonlinear time-dependent partial differential equations

    Full text link
    In this paper, we develop regularized discrete least squares collocation and finite volume methods for solving two-dimensional nonlinear time-dependent partial differential equations on irregular domains. The solution is approximated using tensor product cubic spline basis functions defined on a background rectangular (interpolation) mesh, which leads to high spatial accuracy and straightforward implementation, and establishes a solid base for extending the computational framework to three-dimensional problems. A semi-implicit time-stepping method is employed to transform the nonlinear partial differential equation into a linear boundary value problem. A key finding of our study is that the newly proposed mesh-free finite volume method based on circular control volumes reduces to the collocation method as the radius limits to zero. Both methods produce a large constrained least-squares problem that must be solved at each time step in the advancement of the solution. We have found that regularization yields a relatively well-conditioned system that can be solved accurately using QR factorization. An extensive numerical investigation is performed to illustrate the effectiveness of the present methods, including the application of the new method to a coupled system of time-fractional partial differential equations having different fractional indices in different (irregularly shaped) regions of the solution domain

    Boundary Conditions for Fractional Diffusion

    Full text link
    This paper derives physically meaningful boundary conditions for fractional diffusion equations, using a mass balance approach. Numerical solutions are presented, and theoretical properties are reviewed, including well-posedness and steady state solutions. Absorbing and reflecting boundary conditions are considered, and illustrated through several examples. Reflecting boundary conditions involve fractional derivatives. The Caputo fractional derivative is shown to be unsuitable for modeling fractional diffusion, since the resulting boundary value problem is not positivity preserving

    Fourier spectral methods for fractional-in-space reaction-diffusion equations

    Get PDF
    Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is computationally demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reactiondiffusion equations. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is show-cased by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models,together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator
    corecore