206 research outputs found

    Immunity and Simplicity for Exact Counting and Other Counting Classes

    Full text link
    Ko [RAIRO 24, 1990] and Bruschi [TCS 102, 1992] showed that in some relativized world, PSPACE (in fact, ParityP) contains a set that is immune to the polynomial hierarchy (PH). In this paper, we study and settle the question of (relativized) separations with immunity for PH and the counting classes PP, C_{=}P, and ParityP in all possible pairwise combinations. Our main result is that there is an oracle A relative to which C_{=}P contains a set that is immune to BPP^{ParityP}. In particular, this C_{=}P^A set is immune to PH^{A} and ParityP^{A}. Strengthening results of Tor\'{a}n [J.ACM 38, 1991] and Green [IPL 37, 1991], we also show that, in suitable relativizations, NP contains a C_{=}P-immune set, and ParityP contains a PP^{PH}-immune set. This implies the existence of a C_{=}P^{B}-simple set for some oracle B, which extends results of Balc\'{a}zar et al. [SIAM J.Comp. 14, 1985; RAIRO 22, 1988] and provides the first example of a simple set in a class not known to be contained in PH. Our proof technique requires a circuit lower bound for ``exact counting'' that is derived from Razborov's [Mat. Zametki 41, 1987] lower bound for majority.Comment: 20 page

    On bounded query machines

    Get PDF
    AbstractSimple proofs are given for each of the following results: (a) P = Pspace if and only if, for every set A, P(A) = Pquery(A) (Selman et al., 1983): (b) NP = Pspace if and only if, for every set A, NP(A) = NPquery(S) (Book, 1981); (c) PH = Pspace if and only if, for every set A, PH(A) = PQH(A) (Book and Wrathall, 1981); (c) PH = Pspace if and only if, for every set set S, PH(S) = PQH(S) = Pspace(S) (Balcázar et al., 1986; Long and Selman, 1986)

    Relativizations of the P =? DNP Question for the BSS Model

    Get PDF
    We consider the uniform BSS model of computation where the machines can perform additions, multiplications, and tests of the form xgeq0xgeq 0. The oracle machines can also check whether a tuple of real numbers belongs to a given oracle set calO{cal O} or not. We construct oracles such that the classes P and DNP relative to these oracles are equal or not equal

    Self-Specifying Machines

    Full text link
    We study the computational power of machines that specify their own acceptance types, and show that they accept exactly the languages that \manyonesharp-reduce to NP sets. A natural variant accepts exactly the languages that \manyonesharp-reduce to P sets. We show that these two classes coincide if and only if \psone = \psnnoplusbigohone, where the latter class denotes the sets acceptable via at most one question to \sharpp followed by at most a constant number of questions to \np.Comment: 15 pages, to appear in IJFC
    • …
    corecore