37 research outputs found

    Coordinated multi-robot formation control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    SAFEL - A Situation-aware Fear Learning Model

    Get PDF
    This thesis proposes a novel and robust online adaptation mechanism for threat prediction and prevention capable of taking into consideration complex contextual and temporal information in its internal learning processes. The proposed mechanism is a hybrid cognitive computational model named SAFEL (Situation-Aware FEar Learning), which integrates machine learning algorithms with concepts of situation-awareness from expert systems to simulate both the cued and contextual fear-conditioning phenomena. SAFEL is inspired by well-known neuroscience findings on the brain's mechanisms of fear learning and memory to provide autonomous robots with the ability to predict undesirable or threatening situations to themselves. SAFEL's ultimate goal is to allow autonomous robots to perceive intricate elements and relationships in their environment, learn with experience through autonomous environmental exploration, and adapt at execution time to environmental changes and threats. SAFEL consists of a hybrid architecture composed of three modules, each based on a different approach and inspired by a different region (or function) of the brain involved in fear learning. These modules are: the Amygdala Module (AM), the Hippocampus Module (HM) and the Working Memory Module (WMM). The AM learns and detects environmental threats while the HM makes sense of the robot's context. The WMM is responsible for combining and associating the two types of information processed by the AM and HM. More specifically, the AM simulates the cued conditioning phenomenon by creating associations between co-occurring aversive and neutral environmental stimuli. The AM represents the kernel of emotional appraisal and threat detection in SAFEL's architecture. The HM, in turn, handles environmental information at a higher level of abstraction and complexity than the AM, which depicts the robot's situation as a whole. The information managed by the HM embeds in a unified representation the temporal interactions of multiple stimuli in the environment. Finally, the WMM simulates the contextual conditioning phenomenon by creating associations between the contextual memory formed in the HM and the emotional memory formed in the AM, thus giving emotional meaning to the contextual information acquired in past experiences. Ultimately, any previously experienced pattern of contextual information triggers the retrieval of that stored contextual memory and its emotional meaning from the WMM, warning the robot that an undesirable situation is likely to happen in the near future. The main contribution of this work as compared to the state of the art is a domain-independent mechanism for online learning and adaptation that combines a fear-learning model with the concept of temporal context and is focused on real-world applications for autonomous robotics. SAFEL successfully integrates a symbolic rule-based paradigm for situation management with machine learning algorithms for memorizing and predicting environmental threats to the robot based on complex temporal context. SAFEL has been evaluated in several experiments, which analysed the performance of each module separately. Ultimately, we conducted a comprehensive case study in the robot soccer scenario to evaluate the collective work of all modules as a whole. This case study also analyses to which extent the emotional feedback of SAFEL can improve the intelligent behaviour of a robot in a practical real-world situation, where adaptive skills and fast/flexible decision-making are crucial

    Implementing Norm-Governed Multi-Agent Systems

    Get PDF
    The actions and interactions of independently acting agents in a multi-agent system must be managed if the agents are to function effectively in their shared environment. Norms, which define the obligatory, prohibited and permitted actions for an agent to perform, have been suggested as a possible method for regulating the actions of agents. Norms are local rules designed to govern the actions of individual agents whilst also allowing the agents to achieve a coherent global behaviour. However, there appear to be very few instances of norm-governed multi-agent systems beyond theoretical examples. We describe an implementation strategy for allowing autonomous agents to take a set of norms into account when determining their actions. These norms are implemented using directives, which are local rules specifying actions for an agent to perform depending on its current state. Agents using directives are implemented in a simulation test bed, called Sinatra. Using Sinatra, we investigate the ability of directives to manage agent actions. We begin with directives to manage agent interactions. We find that when agents rely on only local rules they will encounter situations where the local rules are unable to achieve the desired global behaviour. We show how a centralised control mechanism can be used to manage agent interactions that are not successfully handled by directives. Controllers, with a global view of the interaction, instruct the individual agents how to act. We also investigate the use of an existing planning tool to implement the resolution mechanism of a controller. We investigate the ability of directives to coordinate the actions of agents in order to achieve a global objective more effectively. Finally, we present a case study of how directives can be used to determine the actions of autonomous mobile robots.Open Acces

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Proceedings of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010)

    Get PDF
    http://ceur-ws.org/Vol-627/allproceedings.pdfInternational audienceMALLOW-2010 is a third edition of a series initiated in 2007 in Durham, and pursued in 2009 in Turin. The objective, as initially stated, is to "provide a venue where: the cost of participation was minimum; participants were able to attend various workshops, so fostering collaboration and cross-fertilization; there was a friendly atmosphere and plenty of time for networking, by maximizing the time participants spent together"

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man
    corecore