24,099 research outputs found

    Self-localization in Ad Hoc Indoor Acoustic Networks

    Get PDF
    The increasing use of mobile technology in everyday life has aroused interest into developing new ways of utilizing the data collected by devices such as mobile phones and wearable devices. Acoustic sensors can be used to localize sound sources if the positions of spatially separate sensors are known or can be determined. However, the process of determining the 3D coordinates by manual measurements is tedious especially with increasing number of sensors. Therefore, the localization process has to be automated. Satellite based positioning is imprecise for many applications and requires line-of-sight to the sky. This thesis studies localization methods for wireless acoustic sensor networks and the process is called self-localization.This thesis focuses on self-localization from sound, and therefore the term acoustic is used. Furthermore, the development of the methods aims at utilizing ad hoc sensor networks, which means that the sensors are not necessarily installed in the premises like meeting rooms and other purpose-built spaces, which often have dedicated audio hardware for spatial audio applications. Instead of relying on such spaces and equipment, mobile devices are used, which are combined to form sensor networks.For instance, a few mobile phones laid on a table can be used to create a sensor network built for an event and it is inherently dismantled once the event is over, which explains the use of the term ad hoc. Once positions of the devices are estimated, the network can be used for spatial applications such as sound source localization and audio enhancement via spatial filtering. The main purpose of this thesis is to present the methods for self-localization of such an ad hoc acoustic sensor network. Using off-the-shelf ad hoc devices to establish sensor networks enables implementation of many spatial algorithms basically in any environment.Several acoustic self-localization methods have been introduced over the years. However, they often rely on specialized hardware and calibration signals. This thesis presents methods that are passive and utilize environmental sounds such as speech from which, by using time delay estimation, the spatial information of the sensor network can be determined. Many previous self-localization methods assume that audio captured by the sensors is synchronized. This assumption cannot be made in an ad hoc sensor network, since the different sensors are unaware of each other without specific signaling that is not available without special arrangement.The methods developed in this thesis are evaluated with simulations and real data recordings. Scenarios in which the targets of positioning are stationary and in motion are studied. The real world recordings are made in closed spaces such as meeting rooms. The targets are approximately 1 – 5 meters apart. The positioning accuracy is approximately five centimeters in a stationary scenario, and ten centimeters in a moving-target scenario on average. The most important result of this thesis is presenting the first self-localization method that uses environmental sounds and off-the-shelf unsynchronized devices, and allows the targets of self-localization to move

    Jumps: Enhancing hop-count positioning in sensor networks using multiple coordinates

    Full text link
    Positioning systems in self-organizing networks generally rely on measurements such as delay and received signal strength, which may be difficult to obtain and often require dedicated equipment. An alternative to such approaches is to use simple connectivity information, that is, the presence or absence of a link between any pair of nodes, and to extend it to hop-counts, in order to obtain an approximate coordinate system. Such an approximation is sufficient for a large number of applications, such as routing. In this paper, we propose Jumps, a positioning system for those self-organizing networks in which other types of (exact) positioning systems cannot be used or are deemed to be too costly. Jumps builds a multiple coordinate system based solely on nodes neighborhood knowledge. Jumps is interesting in the context of wireless sensor networks, as it neither requires additional embedded equipment nor relies on any nodes capabilities. While other approaches use only three hop-count measurements to infer the position of a node, Jumps uses an arbitrary number. We observe that an increase in the number of measurements leads to an improvement in the localization process, without requiring a high dense environment. We show through simulations that Jumps, when compared with existing approaches, reduces the number of nodes sharing the same coordinates, which paves the way for functions such as position-based routing

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN

    Get PDF
    The localization of the sensor nodes is a fundamental problem in wireless sensor networks. There are a lot of different kinds of solutions in the literature. Some of them use external devices like GPS, while others use special hardware or implicit parameters in wireless communications. In applications like wildlife localization in a natural environment, where the power available and the weight are big restrictions, the use of hungry energy devices like GPS or hardware that add extra weight like mobile directional antenna is not a good solution. Due to these reasons it would be better to use the localization’s implicit characteristics in communications, such as connectivity, number of hops or RSSI. The measurement related to these parameters are currently integrated in most radio devices. These measurement techniques are based on the beacons’ transmissions between the devices. In the current study, a novel tracking distributed method, called LIS, for localization of the sensor nodes using moving devices in a network of static nodes, which have no additional hardware requirements is proposed. The position is obtained with the combination of two algorithms; one based on a local node using a fuzzy system to obtain a partial solution and the other based on a centralized method which merges all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the partial solutions. Advantages of using fuzzy system versus the classical Centroid Localization (CL) algorithm without fuzzy preprocessing are compared with an ad hoc simulator made for testing localization algorithms. With this simulator, it is demonstrated that the proposed method obtains less localization errors and better accuracy than the centroid algorithm.Junta de Andalucía P07-TIC-0247

    Robust Localization from Incomplete Local Information

    Get PDF
    We consider the problem of localizing wireless devices in an ad-hoc network embedded in a d-dimensional Euclidean space. Obtaining a good estimation of where wireless devices are located is crucial in wireless network applications including environment monitoring, geographic routing and topology control. When the positions of the devices are unknown and only local distance information is given, we need to infer the positions from these local distance measurements. This problem is particularly challenging when we only have access to measurements that have limited accuracy and are incomplete. We consider the extreme case of this limitation on the available information, namely only the connectivity information is available, i.e., we only know whether a pair of nodes is within a fixed detection range of each other or not, and no information is known about how far apart they are. Further, to account for detection failures, we assume that even if a pair of devices is within the detection range, it fails to detect the presence of one another with some probability and this probability of failure depends on how far apart those devices are. Given this limited information, we investigate the performance of a centralized positioning algorithm MDS-MAP introduced by Shang et al., and a distributed positioning algorithm, introduced by Savarese et al., called HOP-TERRAIN. In particular, for a network consisting of n devices positioned randomly, we provide a bound on the resulting error for both algorithms. We show that the error is bounded, decreasing at a rate that is proportional to R/Rc, where Rc is the critical detection range when the resulting random network starts to be connected, and R is the detection range of each device.Comment: 40 pages, 13 figure

    Sparse Localization with a Mobile Beacon Based on LU Decomposition in Wireless Sensor Networks

    Get PDF
    Node localization is the core in wireless sensor network. It can be solved by powerful beacons, which are equipped with global positioning system devices to know their location information. In this article, we present a novel sparse localization approach with a mobile beacon based on LU decomposition. Our scheme firstly translates node localization problem into a 1-sparse vector recovery problem by establishing sparse localization model. Then, LU decomposition pre-processing is adopted to solve the problem that measurement matrix does not meet the re¬stricted isometry property. Later, the 1-sparse vector can be exactly recovered by compressive sensing. Finally, as the 1-sparse vector is approximate sparse, weighted Cen¬troid scheme is introduced to accurately locate the node. Simulation and analysis show that our scheme has better localization performance and lower requirement for the mobile beacon than MAP+GC, MAP-M, and MAP-M&N schemes. In addition, the obstacles and DOI have little effect on the novel scheme, and it has great localization performance under low SNR, thus, the scheme proposed is robust

    MiPOS - the Mote Indoor Positioning System

    Get PDF
    In the past few years, there have been huge research efforts into ubiquitous and context aware platforms that offer a user a custom level of service based on some known local parameters. The utility of such systems is greatly enhanced if a physical locational area can be determined. Recently, hybrid devices have been developed combining low power micro controllers with short range FM radio transceivers. Some location identification work has been carried out with these systems such as the Matrix Pencil approximation technique[8],however most of these all provide information for an ideal square area with no RF obstructions.Here we present MiPOS, a scalable locationing system based on the MICA mote[11] family of devices.The design goal of MiPOS is to provide a low-power, scalable, distributed locationing system suited to an indoor (office) environment.During the presentation of this paper we will highlight solutions in the areas of security, radio and network management and power awareness for a hybrid context aware wearable locationing device
    corecore