308 research outputs found

    Enhanced Inter-Cell Interference Coordination Challenges in Heterogeneous Networks

    Full text link
    3GPP LTE-Advanced has started a new study item to investigate Heterogeneous Network (HetNet) deployments as a cost effective way to deal with the unrelenting traffic demand. HetNets consist of a mix of macrocells, remote radio heads, and low-power nodes such as picocells, femtocells, and relays. Leveraging network topology, increasing the proximity between the access network and the end-users, has the potential to provide the next significant performance leap in wireless networks, improving spatial spectrum reuse and enhancing indoor coverage. Nevertheless, deployment of a large number of small cells overlaying the macrocells is not without new technical challenges. In this article, we present the concept of heterogeneous networks and also describe the major technical challenges associated with such network architecture. We focus in particular on the standardization activities within the 3GPP related to enhanced inter-cell interference coordination.Comment: 12 pages, 4 figures, 2 table

    On Cloud-based multisource Reliable Multicast Transport in Broadband Multimedia Satellite Networks

    Get PDF
    Multimedia synchronization, Software Over the Air, Personal Information Management on Cloud networks require new reliable protocols, which reduce the traffic load in the core and edge network. This work shows via simulations the performance of an efficient multicast file delivery, which advantage of the distributed file storage in Cloud computing. The performance evaluation focuses on the case of a personal satellite equipment with error prone channels

    PROCESS FOR BREAKING DOWN THE LTE SIGNAL TO EXTRACT KEY INFORMATION

    Get PDF
    The increasingly important role of Long Term Evolution (LTE) has increased security concerns among the service providers and end users and made security of the network even more indispensable. The main thrust of this thesis is to investigate if the LTE signal can be broken down in a methodical way to obtain information that would otherwise be private; e.g., the Global Positioning System (GPS) location of the user equipment/base station or identity (ID) of the user. The study made use of signal simulators and software to analyze the LTE signal to develop a method to remove noise, breakdown the LTE signal and extract desired information. From the simulation results, it was possible to extract key information in the downlink like the Downlink Control Information (DCI), Cell-Radio Network Temporary Identifier (C-RNTI) and physical Cell Identity (Cell-ID). This information can be modified to cause service disruptions in the network within a reasonable amount of time and with modest computing resources.Defence Science and Technology Agency, SingaporeApproved for public release; distribution is unlimited

    Uplink Resource Allocation in Relay Enhanced LTE-Advanced Cellular Networks

    Get PDF
    In parallel to HSPA evolution, 3GPP has adopted the Long Term Evolution track to fulfill the performance targets of 4G cellular networks. Multi-hop networks consisting of fixed decode and forward relays nodes are proposed to relax the capacity and coverage limitations encountered by traditional macro base station deployments. The relays are designed to operate on the in-band spectrum and support self-backhauling of user data. This thesis work provides an insight into the impact of uplink resource allocation in delivering improved user experience in relay enhanced cellular networks. Radio resource allocation and power control play a crucial role in the performance of wireless communication systems. System level simulations reveal that reuse 1 based relay enhanced cells operate in an interference limited scenario. Therefore, a resource allocation scheme based on user grouping is investigated to coordinate and mitigate the negative effect of interference. It is shown that the proposed methodology is spectrally efficient and delivers improved system performance. In addition to improving system performance, relaying is seen to be beneficial in significantly reducing battery consumption in devices. This is highly appealing since the next generation cellular networks are targeted towards higher bit rates and extended periods of mobile data usage. This work provides specific insights into the performance limiting criteria of the envisaged multi-hop system and, furthermore, is expected to contribute towards 3GPP's standardization of the relaying study item

    Self-Organizing Radio Resource Management and Backhaul Dimensioning for Cellular Networks

    Get PDF
    The huge appetite for mobile broadband has resulted to continuous and complementary improvement in both radio access technology and mobile backhaul of cellular networks, along with network densification. Femtocells are foreseen to complement traditional macro base stations (BSs) in Long Term Evolution (LTE) and future cellular networks.  Deployment of femtocells, introduce new requirements for distributing phase synchronization and interference management in heterogeneous network. Achieving phase synchronization for indoor femtocells will be beneficial for time division duplexing (TDD) operation and inter-cell interference cancellation and management techniques, but challenging to achieve as global positioning system does not work indoors. In this thesis, we propose coordinated transmission and reception algorithms to reduce interference across BSs, and thereby achieve better network-wide phase synchronization over the air. We also cover the problem of selecting component carriers for dense small cell network, by improving the throughput of cell-edge user equipment's (UEs). We propose three strategies: Selfish, Altruistic and Symmetric for primary carrier selection and remove the outage of the macro UEs near the closed subscriber group (CSG) femtocells. Further, we propose dynamic frequency selection algorithm for component carrier selection, where decisions to select or drop a carrier are based on gain/loss predictions made from UE handover measurements. Thereby, we maximize the sum utility of the dense femtocell network, which includes mean-rate, weighted fair-rate, proportional fair-rate and max-min utility.  Mobile backhaul dimensioning is studied to improve the handover and provide the cost-effective backhaul opportunity for femtocells deployed in emerging markets. In a packet-switched wireless system e.g. LTE, data packets are needed to be efficiently forwarded between BSs during handover over the backhaul. We improve the packet forwarding handover mechanism by reducing the amount of forwarded data between BSs. Another challenge lies in equipping the femtocells with backhaul, where copper cable, optical fiber or microwave radio links are expensive options for unplanned emerging market case. We consider leveraging macro LTE networks to backhaul High Speed Packet Access femtocells, thereby highlight the possibilities for cost-effective capacity upgrades of dense settlements

    Aumento de capacidade em sistemas MIMO coordenados para advanced LTE com utilização de repetidores fixos

    Get PDF
    Com vista a revolucionar o sector das comunicações móveis, muito à custa dos elevados débitos prometidos, a tecnologia LTE recorre a uma técnica que se prevê que seja bastante utilizada nas futuras redes de comunicações móveis: Relaying. Juntamente com esta técnica, o LTE recorre à técnica MIMO, para melhorar a qualidade da transmissão em ambientes hostis e oferecer elevados ritmos de transmissão. No planeamento das próximas redes LTE, o recurso à técnica Relaying é frequente. Esta técnica, tem como objectivo aumentar a cobertura e/ou capacidade da rede, e ainda melhorar o seu desempenho em condições de fronteira de célula. A performance de uma RS depende da sua localização, das condições de propagação do canal rádio a que tanto a RS como o EU estão sujeitos, e ainda da capacidade que a RS tem de receber, processar e reencaminhar a informação. O objectivo da tese é estudar a relação existente entre o posicionamento de uma RS e o seu desempenho. Desta forma, pretende-se concluir qual a posição ideal de uma RS (tanto do tipo AF como SDF). Para além deste estudo, é apresentado um comparativo do desempenho dos modos MIMO TD e OL-SM, onde se conclui em que condições deverão ser utilizados, numa rede LTE equipada com FRSs.With the aim of providing high data rates, the Long Term Evolution (LTE) standard makesuse of relaying as one of the important techniques for new mobile networks. LTE will alsomake use of the Multiple-Input Multiple-Output (MIMO) technique, to improve the transmission’s quality in hostile environments and to offer very high data rates. The relay solution in mobile networks planning is a highly used technique in next LTEnetworks. This technique has the aim of increasing the network coverage and/or capacityand improves the cell edge throughput. The Relay Station (RS) performance depends on itsposition in the cell, the radio conditions to which the RS and the User Equipment (UE) are subjected, and the RS capability to receive process and forward the information. The aim of this thesis is to conclude about the optimized position in which a RS (fromtypes Amplify and Forward (AF)/ Selective Decode and Forward (SDF)) should be placed,with the aim of maximizing the UE throughput. Furthermore, to compare the performanceof Transmit Diversity (TD) versus Open-Loop Spatial Multiplexing (OL-SM) MIMO in LTE,and under which conditions they should be used, in a network equipped with Fixed RelayStations (FRSs)

    Coverage measurements of NB-IoT technology

    Get PDF
    Abstract. The narrowband internet of things (NB-IoT) is a cellular radio access technology that provides seamless connectivity to wireless IoT devices with low latency, low power consumption, and long-range coverage. For long-range coverage, NB-IoT offers a coverage enhancement (CE) mechanism that is achieved by repeating the transmission of signals. Good network coverage is essential to reduce the battery usage and power consumption of IoT devices, while poor network coverage increases the number of repetitions in transmission, which causes high power consumption of IoT devices. The primary objective of this work is to determine the network coverage of NB-IoT technology under the University of Oulu’s 5G test network (5GTN) base station. In this thesis work, measurement results on key performance indicators such as reference signal received power (RSRP), reference signal received quality (RSRQ), received signal strength indicator (RSSI), and signal to noise plus interference (SINR) have been reported. The goal of the measurement is to find out the NB-IoT signal strength at different locations, which are served by the 5GTN cells configured with different parameters, e.g., Tx power levels, antenna tilt angles. The signal strength of NB-IoT technology has been measured at different places under the 5GTN base station in Oulu, Finland. Drive tests have been conducted to measure the signal strength of NB-IoT technology by using the Quectel BG96 module, Qualcomm kDC-5737 dongle and Keysight Nemo Outdoor software. The results have shown the values of RSRP, RSRQ, RSSI, and SINR at different locations within several kilometres of the 5GTN base stations. These values indicate the performance of the network and are used to assess the performance of network services to the end-users. In this work, the overall performance of the network has been checked to verify if network performance meets good signal levels and good network coverage. Relevant details of the NB-IoT technology, the theory behind the signal coverage and comparisons with the measurement results have also been discussed to check the relevance of the measurement results
    corecore