2,212 research outputs found

    An Assessment on the Use of Stationary Vehicles as a Support to Cooperative Positioning

    Get PDF
    In this paper, we consider the use of stationary vehicles as tools to enhance the localisation capabilities of moving vehicles in a VANET. We examine the idea in terms of its potential benefits, technical requirements, algorithmic design and experimental evaluation. Simulation results are given to illustrate the efficacy of the technique.Comment: This version of the paper is an updated version of the initial submission, where some initial comments of reviewers have been taken into accoun

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    D2D-based Cooperative Positioning Paradigm for Future Wireless Systems: A Survey

    Get PDF
    Emerging communication network applications require a location accuracy of less than 1m in more than 95% of the service area. For this purpose, 5G New Radio (NR) technology is designed to facilitate high-accuracy continuous localization. In 5G systems, the existence of high-density small cells and the possibility of the device-to-device (D2D) communication between mobile terminals paves the way for cooperative positioning applications. From the standardization perspective, D2D technology is already under consideration (5G NR Release 16) for ultra-dense networks enabling cooperative positioning and is expected to achieve the ubiquitous positioning of below one-meter accuracy, thereby fulfilling the 5G requirements. In this survey, the strengths and weaknesses of D2D as an enabling technology for cooperative cellular positioning are analyzed (including two D2D approaches to perform cooperative positioning); lessons learned and open issues are highlighted to serve as guidelines for future research

    Multi-Channel Two-way Time of Flight Sensor Network Ranging

    Get PDF
    Two-way time of flight (ToF) ranging is one of the most interesting approaches for localization in wireless sensor networking since previous ToF ranging approaches using commercial off-the-shelf (COTS) devices have achieved good accuracy. The COTS-based approaches were, however, evaluated only in line-of-sight conditions. In this paper, we extend ToF ranging using multiple IEEE 802.15.4 channels. Our results demonstrate that with multiple channels we can achieve good accuracy even in non line-of-sight conditions. Furthermore, our measurements suggest that the variance between different channels serves as a good estimate of the accuracy of the measurements, which can be valuable information for applications that require localization information

    RSSI-Based Self-Localization with Perturbed Anchor Positions

    Full text link
    We consider the problem of self-localization by a resource-constrained mobile node given perturbed anchor position information and distance estimates from the anchor nodes. We consider normally-distributed noise in anchor position information. The distance estimates are based on the log-normal shadowing path-loss model for the RSSI measurements. The available solutions to this problem are based on complex and iterative optimization techniques such as semidefinite programming or second-order cone programming, which are not suitable for resource-constrained environments. In this paper, we propose a closed-form weighted least-squares solution. We calculate the weights by taking into account the statistical properties of the perturbations in both RSSI and anchor position information. We also estimate the bias of the proposed solution and subtract it from the proposed solution. We evaluate the performance of the proposed algorithm considering a set of arbitrary network topologies in comparison to an existing algorithm that is based on a similar approach but only accounts for perturbations in the RSSI measurements. We also compare the results with the corresponding Cramer-Rao lower bound. Our experimental evaluation shows that the proposed algorithm can substantially improve the localization performance in terms of both root mean square error and bias.Comment: Accepted for publication in 28th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2017
    • …
    corecore