27 research outputs found

    Exploiting Superconvergence Through Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering

    Get PDF
    There has been much work in the area of superconvergent error analysis for finite element and discontinuous Galerkin (DG) methods. The property of superconvergence leads to the question of how to exploit this information in a useful manner, mainly through superconvergence extraction. There are many methods used for superconvergence extraction such as projection, interpolation, patch recovery and B-spline convolution filters. This last method falls under the class of Smoothness-Increasing Accuracy-Conserving (SIAC) filters. It has the advantage of improving both smoothness and accuracy of the approximation. Specifically, for linear hyperbolic equations it can improve the order of accuracy of a DG approximation from k + 1 to 2k + 1, where k is the highest degree polynomial used in the approximation, and can increase the smoothness to k − 1. In this article, we discuss the importance of overcoming the mathematical barriers in making superconvergence extraction techniques useful for applications, specifically focusing on SIAC filtering

    One-Sided Position-Dependent Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering Over Uniform and Non-Uniform Meshes

    Get PDF
    In this paper, we introduce a new position-dependent Smoothness-Increasing Accuracy-Conserving (SIAC) filter that retains the benefits of position dependence while ameliorating some of its shortcomings. As in the previous position-dependent filter, our new filter can be applied near domain boundaries, near a discontinuity in the solution, or at the interface of different mesh sizes; and as before, in general, it numerically enhances the accuracy and increases the smoothness of approximations obtained using the discontinuous Galerkin (dG) method. However, the previously proposed position-dependent one-sided filter had two significant disadvantages: (1) increased computational cost (in terms of function evaluations), brought about by the use of 4k+14k+1 central B-splines near a boundary (leading to increased kernel support) and (2) increased numerical conditioning issues that necessitated the use of quadruple precision for polynomial degrees of k≥3k\ge 3 for the reported accuracy benefits to be realizable numerically. Our new filter addresses both of these issues --- maintaining the same support size and with similar function evaluation characteristicsas the symmetric filter in a way that has better numerical conditioning --- making it, unlike its predecessor, amenable for GPU computing. Our new filter was conceived by revisiting the original error analysis for superconvergence of SIAC filters and by examining the role of the B-splines and their weights in the SIAC filtering kernel. We demonstrate, in the uniform mesh case, that our new filter is globally superconvergent for k=1k=1 and superconvergent in the interior (e.g., region excluding the boundary) for k≥2k\ge2. Furthermore, we present the first theoretical proof of superconvergence for postprocessing over smoothly varying meshes, and explain the accuracy-order conserving nature of this new filter when applied to certain non-uniform meshes cases. We provide numerical examples supporting our theoretical results and demonstrating that our new filter, in general, enhances the smoothness and accuracy of the solution. Numerical results are presented for solutions of both linear and nonlinear equation solved on both uniform and non-uniform one- and two-dimensional meshes

    Smoothness-Increasing Accuracy-Conserving (SIAC) filtering and quasi interpolation: A unified view

    Get PDF
    Filtering plays a crucial role in postprocessing and analyzing data in scientific and engineering applications. Various application-specific filtering schemes have been proposed based on particular design criteria. In this paper, we focus on establishing the theoretical connection between quasi-interpolation and a class of kernels (based on B-splines) that are specifically designed for the postprocessing of the discontinuous Galerkin (DG) method called Smoothness-Increasing Accuracy-Conserving (SIAC) filtering. SIAC filtering, as the name suggests, aims to increase the smoothness of the DG approximation while conserving the inherent accuracy of the DG solution (superconvergence). Superconvergence properties of SIAC filtering has been studied in the literature. In this paper, we present the theoretical results that establish the connection between SIAC filtering to long-standing concepts in approximation theory such as quasi-interpolation and polynomial reproduction. This connection bridges the gap between the two related disciplines and provides a decisive advancement in designing new filters and mathematical analysis of their properties. In particular, we derive a closed formulation for convolution of SIAC kernels with polynomials. We also compare and contrast cardinal spline functions as an example of filters designed for image processing applications with SIAC filters of the same order, and study their properties

    Hexagonal Smoothness-Increasing Accuracy-Conserving Filtering

    Get PDF
    Discontinuous Galerkin (DG) methods are a popular class of numerical techniques to solve partial differential equations due to their higher order of accuracy. However, the inter-element discontinuity of a DG solution hinders its utility in various applications, including visualization and feature extraction. This shortcoming can be alleviated by postprocessing of DG solutions to increase the inter-element smoothness. A class of postprocessing techniques proposed to increase the inter-element smoothness is SIAC filtering. In addition to increasing the inter-element continuity, SIAC filtering also raises the convergence rate from order k+1k+1 to order 2k+12k+1 . Since the introduction of SIAC filtering for univariate hyperbolic equations by Cockburn et al. (Math Comput 72(242):577–606, 2003), many generalizations of SIAC filtering have been proposed. Recently, the idea of dimensionality reduction through rotation has been the focus of studies in which a univariate SIAC kernel has been used to postprocess a two-dimensional DG solution (Docampo-Sánchez et al. in Multi-dimensional filtering: reducing the dimension through rotation, 2016. arXiv preprint arXiv:1610.02317). However, the scope of theoretical development of multidimensional SIAC filters has never gone beyond the usage of tensor product multidimensional B-splines or the reduction of the filter dimension. In this paper, we define a new SIAC filter called hexagonal SIAC (HSIAC) that uses a nonseparable class of two-dimensional spline functions called hex splines. In addition to relaxing the separability assumption, the proposed HSIAC filter provides more symmetry to its tensor-product counterpart. We prove that the superconvergence property holds for a specific class of structured triangular meshes using HSIAC filtering and provide numerical results to demonstrate and validate our theoretical results

    On the Treatment of Field Quantities and Elemental Continuity in FEM Solutions

    Get PDF
    As the finite element method (FEM) and the finite volume method (FVM), both traditional and high-order variants, continue their proliferation into various applied engineering disciplines, it is important that the visualization techniques and corresponding data analysis tools that act on the results produced by these methods faithfully represent the underlying data. To state this in another way: the interpretation of data generated by simulation needs to be consistent with the numerical schemes that underpin the specific solver technology. As the verifiable visualization literature has demonstrated: visual artifacts produced by the introduction of either explicit or implicit data transformations, such as data resampling, can sometimes distort or even obfuscate key scientific features in the data. In this paper, we focus on the handling of elemental continuity, which is often only C0 continuous or piecewise discontinuous, when visualizing primary or derived fields from FEM or FVM simulations. We demonstrate that traditional data handling and visualization of these fields introduce visual errors. In addition, we show how the use of the recently proposed line-SIAC filter provides a way of handling elemental continuity issues in an accuracy-conserving manner with the added benefit of casting the data in a smooth context even if the representation is element discontinuous

    Smoothness-Increasing Accuracy-Conserving (SIAC) filters for derivative approximations of discontinuous Galerkin (DG) solutions over nonuniform meshes and near boundaries

    Get PDF
    Accurate approximations for the derivatives are usually required in many application areas such as biomechanics, chemistry and visualization applications. With the help of Smoothness-Increasing Accuracy-Conserving (SIAC) filtering, one can enhance the derivatives of a discontinuous Galerkin solution. However, current investigations of derivative filtering are limited to uniform meshes and periodic boundary conditions, which do not meet practical requirements. The purpose of this paper is twofold: to extend derivative filtering to nonuniform meshes and propose position-dependent derivative filters to handle filtering near the boundaries. Through analyzing the error estimates for SIAC filtering, we extend derivative filtering to nonuniform meshes by changing the scaling of the filter. For filtering near boundaries, we discuss the advantages and disadvantages of two existing position-dependent filters and then extend them to position-dependent derivative filters, respectively. Further, we prove that with the position-dependent derivative filters, the filtered solutions can obtain a better accuracy rate compared to the original discontinuous Galerkin approximation with arbitrary derivative orders over nonuniform meshes. One- and two-dimensional numerical results are provided to support the theoretical results and demonstrate that the position-dependent derivative filters, in general, enhance the accuracy of the solution for both uniform and nonuniform meshes
    corecore