3,628 research outputs found

    Discrete mechanics and variational integrators

    Get PDF
    This paper gives a review of integration algorithms for finite dimensional mechanical systems that are based on discrete variational principles. The variational technique gives a unified treatment of many symplectic schemes, including those of higher order, as well as a natural treatment of the discrete Noether theorem. The approach also allows us to include forces, dissipation and constraints in a natural way. Amongst the many specific schemes treated as examples, the Verlet, SHAKE, RATTLE, Newmark, and the symplectic partitioned Runge–Kutta schemes are presented

    Symplectic-energy-momentum preserving variational integrators

    Get PDF
    The purpose of this paper is to develop variational integrators for conservative mechanical systems that are symplectic and energy and momentum conserving. To do this, a space–time view of variational integrators is employed and time step adaptation is used to impose the constraint of conservation of energy. Criteria for the solvability of the time steps and some numerical examples are given

    Quantization of systems with temporally varying discretization I: Evolving Hilbert spaces

    Full text link
    A temporally varying discretization often features in discrete gravitational systems and appears in lattice field theory models subject to a coarse graining or refining dynamics. To better understand such discretization changing dynamics in the quantum theory, an according formalism for constrained variational discrete systems is constructed. While the present manuscript focuses on global evolution moves and, for simplicity, restricts to Euclidean configuration spaces, a companion article discusses local evolution moves. In order to link the covariant and canonical picture, the dynamics of the quantum states is generated by propagators which satisfy the canonical constraints and are constructed using the action and group averaging projectors. This projector formalism offers a systematic method for tracing and regularizing divergences in the resulting state sums. Non-trivial coarse graining evolution moves lead to non-unitary, and thus irreversible, projections of physical Hilbert spaces and Dirac observables such that these concepts become evolution move dependent on temporally varying discretizations. The formalism is illustrated in a toy model mimicking a `creation from nothing'. Subtleties arising when applying such a formalism to quantum gravity models are discussed.Comment: 45 pages, 1 appendix, 6 figures (additional explanations, now matches published version

    The Renormalization-Group peculiarities of Griffiths and Pearce: What have we learned?

    Get PDF
    We review what we have learned about the "Renormalization-Group peculiarities" which were discovered about twenty years ago by Griffiths and Pearce, and which questions they asked are still widely open. We also mention some related developments.Comment: Proceedings Marseille meeting on mathematical results in statistical mechanic

    Bosons condensed in two modes with flavour-changing interaction

    Full text link
    A quantum model is considered for NN bosons populating two orthogonal single-particle modes with tunable energy separation in the presence of flavour-changing contact interaction. The quantum ground state is well approximated as a coherent superposition (for zero temperature) or a mixture (at low temperature) of two quasi-classical states. In a mean field description, the systems realizes one of these states via spontaneous symmetry breaking. Both mean field states, in a certain parameter range, possess finite angular momentum and exhibit broken time-reversal symmetry in contrast to the quantum ground state. The phase diagram is explored at the mean-field level and by direct diagonalisation. The nature of the quantum ground state at zero and finite temperature is analyzed by means of the Penrose Onsager criterion. One of three possible phases shows fragmentation on the single-particle level together with a finite pair order parameter. Thermal and quantum fluctuations are characterized with respect to regions of universal scaling behavior. The non-equilibrium dynamics shows a sharp transition between a self-trapping and a pair-tunneling regime. A recently realized experimental implementation is discussed with bosonic atoms condensed in the two inequivalent energy minima X±X_{\pm} of the second band of a bipartite two-dimensional optical lattice.Comment: 12 pages, 12 figures, extended and revise

    Approximate Decoherence of Histories and 't Hooft's Deterministic Quantum Theory

    Get PDF
    This paper explores the possibility that an exactly decoherent set of histories may be constructed from an approximately decoherent set by small distortions of the operators characterizing the histories. In particular, for the case of histories of positions and momenta, this is achieved by doubling the set of operators and then finding, amongst this enlarged set, new position and momentum operators which commute, so decohere exactly, and which are ``close'' to the original operators. The enlarged, exactly decoherent, theory has the same classical dynamics as the original one, and coincides with the so-called deterministic quantum theories of the type recently studied by 't Hooft. These results suggest that the comparison of standard and deterministic quantum theories may provide an alternative method of characterizing emergent classicality. A side-product is the surprising result that histories of momenta in the quantum Brownian motion model (for the free particle in the high-temperature limit) are exactly decoherent.Comment: 41 pages, plain Te
    • …
    corecore