963 research outputs found

    Multiphase PMSM and PMaSynRM flux map model with space harmonics and multiple plane cross harmonic saturation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Multiphase Synchronous Machines vary in rotor construction and winding distribution leading to non-sinusoidal inductances along the rotor periphery. Moreover, saturation and cross-saturation effects make the precise modeling a complex task. This paper proposes a general model of multi-phase magnet-excited synchronous machines considering multi-dimensional space modeling and revealing cross-harmonic saturation. The models can predict multiphase motor behavior in any transient state, including startup. They are based on flux maps obtained from static 2D Finite-Element (FE) analysis. FE validations have been performed to confirm authenticity of the dynamic models of multiphase PMaSynRMs. Very close to FE precision is guaranteed while computation time is incomparably lower.Postprint (author's final draft

    Local weak observability conditions of sensorless AC drives

    Get PDF
    Alternating current (AC) electrical drive control without mechanical sensors is an active research topic. This paper studies the observability of both induction machine and synchronous machine sensorless drives. Observer-based sensorless techniques are known for their deteriorated performance in some operating conditions. An observability analysis of the machines helps understanding (and improving) the observer's behavior in the aforementioned conditions.Comment: arXiv admin note: text overlap with arXiv:1512.0366

    On the reliability of electrical drives for safety-critical applications

    Get PDF
    The aim of this work is to present some issues related to fault tolerant electric drives,which are able to overcome different types of faults occurring in the sensors, in thepower converter and in the electrical machine, without compromising the overallfunctionality of the system. These features are of utmost importance in safety-criticalapplications. In this paper, the reliability of both commercial and innovative driveconfigurations, which use redundant hardware and suitable control algorithms, will beinvestigated for the most common types of fault: besides standard three phase motordrives, also multiphase topologies, open-end winding solutions, multi-machineconfigurations will be analyzed, applied to various electric motor technologies. Thecomplexity of hardware and control strategies will also be compared in this paper, sincethis has a tremendous impact on the investment costs

    Performance improvement of permanent magnet ac motors

    Get PDF
    Multi-phase motors have several advantages over the traditional three-phase motors. In this study, the additional degrees of freedom available in five-phase permanent magnet motors have been used for three purposes: 1) enhancing the torque producing capability of the motor, 2) improving the reliability of the system, and 3) better adjusting of the torque and flux linkages of the five-phase direct torque controlled system. 1) Due to the fact that space and time harmonics of the same orders will contribute positively to output torque, a five-phase permanent magnet motor with quasi-rectangular back-EMF waveform is supplied with combined fundamental and third harmonic of currents. For modeling and analysis of the motor a 0 3 3 1 1 q d q d frame of reference is defined where 1 1q d rotates at the synchronous speed and 3 3q d rotates at the three times synchronous speed. Based on the mathematical model in the 0 3 3 1 1 q d q d frame of reference, it is shown that this system while having a higher torque density with respect to a conventional permanent magnet synchronous machine, is also compatible with vector control algorithm. 2) A resilient current control of the five-phase permanent motor with both sinusoidal and trapezoidal back-EMF waveforms under asymmetrical fault condition is proposed. In this scheme, the stator MMF is kept unchanged during healthy and faulty condition. Therefore, the five-phase permanent magnet motor operates continuously and steadily without additional hardware and just by modifying the control algorithm in case of loss of up to two phases. The feature is of major importance in some specific applications where high reliability is required. 3) High torque and flux ripple are the major drawbacks of a three-phase direct torque controlled system. The number of space voltage vectors directly influences the performance of DTC system. A five-phase drive, while benefiting from other advantages of high order phase drives, has inherently 32 space voltage vectors which permits better flexibility in selecting the switching states and finer adjustment of flux and torque. A sensorless direct torque control of five-phase permanent magnet motor is implemented. Speed information is obtained based on the position of stator flux linkages and load angle. Experiments have been conducted on a 5kW five-phase surface mount permanent magnet motor and a 3kW five-phase interior permanent magnet motor by using TMS320C32 DSP. The results obtained are consistent with theoretical studies and simulation analysis, which further demonstrate the feasibility and practical significance of the five-phase permanent magnet motor drives

    High efficiency sensorless fault tolerant control of permanent magnet assisted synchronous reluctance motor

    Get PDF
    In the last decades, the development trends of high efficiency and compact electric drives on the motor side focused on Permanent Magnet Synchronous Machines (PMSMs) equipped with magnets based on the rare-earth elements. The permanent magnet components, however, dramatically impact the overall bill of materials of motor construction. This aspect has become even more critical due to the price instability of the rare-earth elements. This is why the Permanent Magnet Assisted Synchronous Reluctance Motor (PMaSynRM) concept was brought to the spotlight as it gives comparable torque density and similar efficiencies as PMSM although at a lower price accredited for the use of magnets built with ferrite composites. Despite these advantages, PMaSynRM drive design is much more challenging because of nonlinear inductances resulting from deep cross saturation effects. It is also true for multi-phase PMSM motors that have gained a lot of attention as they proportionally split power by the increased number of phases. Furthermore, they offer fault-tolerant operation while one or more phases are down due to machine, inverter, or sensor fault. The number of phases further increases the overall complexity for modeling and control design. It is clear then that a combination of multi-phase with PMaSynRM concept brings potential benefits but confronts standard modeling methods and drive development techniques. This Thesis consists of detailed modeling, control design, and implementation of a five-phase PMaSynRM drive for normal healthy and open phase fault-tolerant applications. Special emphasis is put on motor modeling that comprises saturation and space harmonics together with axial asymmetry introduced by rotor skewing. Control strategies focused on high efficiency are developed and the position estimation based on the observer technique is derived. The proposed models are validated through Finite Element Analysis (FEA) and experimental campaign. The results show the effectiveness of the elaborated algorithms and methods that are viable for further industrialization in PMaSynRM drives with fault-tolerant capabilities.En últimas décadas, las tendencias de desarrollo de accionamientos eléctricos compactos y de alta eficiencia en el lado del motor se centraron en las maquinas síncronas de imanes permanentes (PMSM) equipadas con imanes basados en elementos de tierras raras. Sin embargo, los componentes de imán permanente impactan dramáticamente en el coste de construcción del motor. Este aspecto se ha vuelto aún más crítico debido a la inestabilidad de precios de los elementos de tierras raras. Esta es la razón por la que el concepto de motor de reluctancia síncrona asistido por imán permanente (PMaSynRM) se ha tomado en consideración, ya que ofrece una densidad de par comparable y eficiencias similares a las de PMSM, aunque a un precio más bajo acreditado para el uso de imanes construidos con compuestos de ferritas. A pesar de drive PMaSynRM resulta muy complejo debido a las inductancias no lineales que resultan de los efectos de saturación cruzada profunda. Esto también es cierto para los motores PMSM polifásicos que han ganado mucha atención en los últimos años, en los que se divide proporcionalmente la potencia por el mayor número de fases. Además, ofrecen operación tolerante a fallas mientras una o más fases están inactivas debido a fallas en la máquina, el inversor o el sensor. Sin embargo, el número de fases aumenta aún más la complejidad general del diseño de modelado y control. Está claro entonces que una combinación de multifase con el concepto PMaSynRM tiene beneficios potenciales, pero dificulta los métodos de modelado estándar y las técnicas de desarrollo del sistema de accionamiento. Esta tesis consiste en el modelado detallado, el diseño de control y la implementación de un drive PMaSynRM de cinco fases para aplicaciones normales en buen estado y tolerantes a fallas de fase abierta. Se pone especial énfasis en el modelado del motor que comprende la saturación y los armónicos espaciales junto con la asimetría axial introducida por la inclinación del rotor. Se desarrollan estrategias de control enfocadas a la alta eficiencia y se deriva la estimación de posición basada en la técnica del observador. Los modelos propuestos se validan mediante Análisis de Elementos Finitos (FEA) y resultados experimentales. Los resultados muestran la efectividad de los algoritmos y métodos elaborados, que resultan viables para la industrialización de unidades PMaSynRM con capacidades tolerantes a fallas.Postprint (published version

    Signal injection and averaging for position estimation of Permanent-Magnet Synchronous Motors

    Full text link
    Sensorless control of Permanent-Magnet Synchronous Motors at low velocity remains a challenging task. A now well-established method consists in injecting a high-frequency signal and use the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also experimentally demonstrates the relevance for position estimation of a simple parametric saturation model recently introduced by the authors

    Sensorless And Independent Speed Control Of Dual-PMSM Drives Using Five-Leg Inverter (FLI)

    Get PDF
    This research aims to develop and implement a combined sensorless and independent speed control for dual-PMSM (Permanent Magnet Synchronous Motor) drives fed by a single Five-Leg Inverter (FLI). Dual-motor drives are widely used in high traction power industry such as propulsion system, aircraft, locomotive, Hybrid Electric Vehicle (HEV) and others. In general, dual-motor drives are designed to reduce size and cost with respect to single motor drives. However, dual-motor drives using a single three-leg inverter has its limitation in the case of operation at different operating conditions and independent speed control requirement. Recent research has shown that, dual motor drives can be independently controlled by using Five-Leg inverter (FLI). By employing this FLI topology, the dual-motor drives can be used for four-quadrant control, variable speed operation and load disturbance rejection. In other words, it can be operated for different applications. In the case of conventional dual-PMSM drives, the drives system still requires current sensors and voltage transducers for speed and rotor position estimation. In PMSM drives, the information of the feedback speed and rotor angular position is compulsory. Therefore, this research is trying to implement a combined sensorless and independent speed control for dual PMSM drives system and at the same time eliminating the usage of voltage transducers. This thesis investigates the behavior of sensorless and independent speed control for Dual-Permanent Magnet Synchronous Motor (PMSM) drives. Initially, a single PMSM drives is designed and simulated, followed by the development of Dual-PMSM drives model. The speed and current controllers are implemented in d-q rotor reference frame using Simulink/MATLAB and the switching signals are generated by the built-in function and dSPACE. Then, the sensorless drive system is developed based on adaptive speed and position estimator. The overall performance of the drives is investigated and evaluated in terms of speed responses overshoot under variation of speed reference and speed drop under load torque disturbances. The simulation results have proved that the performance characteristics of sensorless dual-PMSM are almost similar with system using sensor except during the start-up condition. The motor performance is degraded in terms of speed overshoot for small and medium speed reference or when the motor operates far from the designed operating condition (rated value). The proposed independent dual-PMSM drives fed by FLI have better load rejection capability compared with conventional dual-PMSM drives fed by single three-phase inverter. The experimental results of the drives under investigation have shown acceptable correlation between the theoretical and simulation
    • …
    corecore