9,550 research outputs found

    KCRC-LCD: Discriminative Kernel Collaborative Representation with Locality Constrained Dictionary for Visual Categorization

    Full text link
    We consider the image classification problem via kernel collaborative representation classification with locality constrained dictionary (KCRC-LCD). Specifically, we propose a kernel collaborative representation classification (KCRC) approach in which kernel method is used to improve the discrimination ability of collaborative representation classification (CRC). We then measure the similarities between the query and atoms in the global dictionary in order to construct a locality constrained dictionary (LCD) for KCRC. In addition, we discuss several similarity measure approaches in LCD and further present a simple yet effective unified similarity measure whose superiority is validated in experiments. There are several appealing aspects associated with LCD. First, LCD can be nicely incorporated under the framework of KCRC. The LCD similarity measure can be kernelized under KCRC, which theoretically links CRC and LCD under the kernel method. Second, KCRC-LCD becomes more scalable to both the training set size and the feature dimension. Example shows that KCRC is able to perfectly classify data with certain distribution, while conventional CRC fails completely. Comprehensive experiments on many public datasets also show that KCRC-LCD is a robust discriminative classifier with both excellent performance and good scalability, being comparable or outperforming many other state-of-the-art approaches

    Multimodal Multipart Learning for Action Recognition in Depth Videos

    Full text link
    The articulated and complex nature of human actions makes the task of action recognition difficult. One approach to handle this complexity is dividing it to the kinetics of body parts and analyzing the actions based on these partial descriptors. We propose a joint sparse regression based learning method which utilizes the structured sparsity to model each action as a combination of multimodal features from a sparse set of body parts. To represent dynamics and appearance of parts, we employ a heterogeneous set of depth and skeleton based features. The proper structure of multimodal multipart features are formulated into the learning framework via the proposed hierarchical mixed norm, to regularize the structured features of each part and to apply sparsity between them, in favor of a group feature selection. Our experimental results expose the effectiveness of the proposed learning method in which it outperforms other methods in all three tested datasets while saturating one of them by achieving perfect accuracy

    Multiclass latent locally linear support vector machines

    Get PDF
    Kernelized Support Vector Machines (SVM) have gained the status of off-the-shelf classifiers, able to deliver state of the art performance on almost any problem. Still, their practical use is constrained by their computational and memory complexity, which grows super-linearly with the number of training samples. In order to retain the low training and testing complexity of linear classifiers and the exibility of non linear ones, a growing, promising alternative is represented by methods that learn non-linear classifiers through local combinations of linear ones. In this paper we propose a new multi class local classifier, based on a latent SVM formulation. The proposed classifier makes use of a set of linear models that are linearly combined using sample and class specific weights. Thanks to the latent formulation, the combination coefficients are modeled as latent variables. We allow soft combinations and we provide a closed-form solution for their estimation, resulting in an efficient prediction rule. This novel formulation allows to learn in a principled way the sample specific weights and the linear classifiers, in a unique optimization problem, using a CCCP optimization procedure. Extensive experiments on ten standard UCI machine learning datasets, one large binary dataset, three character and digit recognition databases, and a visual place categorization dataset show the power of the proposed approach

    Higher-order Occurrence Pooling on Mid- and Low-level Features: Visual Concept Detection

    Get PDF
    In object recognition, the Bag-of-Words model assumes: i) extraction of local descriptors from images, ii) embedding these descriptors by a coder to a given visual vocabulary space which results in so-called mid-level features, iii) extracting statistics from mid-level features with a pooling operator that aggregates occurrences of visual words in images into so-called signatures. As the last step aggregates only occurrences of visual words, it is called as First-order Occurrence Pooling. This paper investigates higher-order approaches. We propose to aggregate over co-occurrences of visual words, derive Bag-of-Words with Second- and Higher-order Occurrence Pooling based on linearisation of so-called Minor Polynomial Kernel, and extend this model to work with adequate pooling operators. For bi- and multi-modal coding, a novel higher-order fusion is derived. We show that the well-known Spatial Pyramid Matching and related methods constitute its special cases. Moreover, we propose Third-order Occurrence Pooling directly on local image descriptors and a novel pooling operator that removes undesired correlation from the image signatures. Finally, Uni- and Bi-modal First-, Second-, and Third-order Occurrence Pooling are evaluated given various coders and pooling operators. The proposed methods are compared to other approaches (e.g. Fisher Vector Encoding) in the same testbed and attain state-of-the-art results
    • …
    corecore