2,197 research outputs found

    Sliding-Mode-Observer-Based Position Estimation for Sensorless Control of the Planar Switched Reluctance Motor

    Get PDF
    This paper proposes a position estimation method for a planar switched reluctance motor (PSRM). In the method, a second-order sliding mode observer (SMO) is used to achieve sensorless control of a PSRM for the first time. A sensorless closed-loop control strategy based on the SMO without a position sensor for the PSRM is constructed. The SMO mainly consists of a flux linkage estimation, an adaptive current estimation, an observing error calculation, and a position estimation section. An adaptive current observer is applied in the current estimation section to minimize the error between the measured and estimated currents and to increase the accuracy of the position estimation. The flux linkage is estimated by the voltage equation of the PSRM, and the estimated flux linkage is then used to estimate the phase current in the adaptive current observer. To calculate the observing error of the SMO using the measured and estimated phase currents, the observing error of the thrust force is introduced to replace the immeasurable state error of the position and speed of the mover. The sliding surface is designed based on the error of the thrust force, and stability analysis is given. Once the sliding surface is reached, the mover position is then estimated accurately. Finally, the effectiveness of the proposed method for the PSRM is verified experimentally

    An educational tool to assist the design process of switched reluctance machines

    Get PDF
    The design of electric machines is a hot topic in the syllabuses of several undergraduate and graduate courses. With the development of hybrid and electrical vehicles, this subject is gaining more popularity, especially in electrical engineering courses. This paper presents a computeraided educational tool to guide engineering students in the design process of a switched reluctance machine (SRM). A step-by-step design procedure is detailed and a user guide interface (GUI) programmed in the Matlab® environment developed for this purpose is shown. This GUI has been proved a useful tool to help the students to validate the results obtained in their lecture assignments, while aiding to achieve a better understanding of the design process of electric machines. A validation of the educational tool is done by means of finite element method (FEM) simulations.Postprint (author's final draft

    Sensorless Rotor Position Estimation For Brushless DC Motors

    Get PDF
    Brushless DC motor speed is controlled by synchronizing the stator coil current with rotor position in order to acquire an accurate alignment of stator rotating field with rotor permanent-magnet field for efficient transfer of energy. In order to accomplish this goal, a motor shaft is instantly tracked by using rotating rotor position sensors such as Hall effect sensors, optical encoders or resolvers etc. Adding sensors to detect rotor position affects the overall reliability and mechanical robustness of the system. Therefore, a whole new trend of replacing position sensors with sensorless rotor position estimation techniques have a promising demand. Among the sensorless approaches, Back-EMF measurement and high frequency signal injection is the most common. Back-EMF is an electromotive force, directly proportional to the speed of rotor revolutions per second, the greater the speed motor acquires the greater the Back-EMF amplitude appears against the motion of rotation. However, the detected Back-EMF is zero at start-up and does not provide motor speed information at this instant. There-fore, Back-EMF based techniques are highly unfavourable for low speed application specially near zero. On the other hand, signal injection techniques are comparatively developed for low or near zero motor speed applications and they also can estimate the on-line motor parameters exploiting the identification theory on phase voltages and currents signals. The signal injection approach requires expensive additional hardware to inject high frequency signal. Since, motors are typically driven with pulse width modulation techniques, high frequency signals are naturally already present which can be used to detect position. This thesis presents rotor position estimation by measuring the voltage and current signals and also proposes an equivalent permanent-magnet synchronous motor model by fitting thedata to a position dependent circuit model

    Design of a Switched Reluctance Motor Controller Applied to Electric Vehicles Traction.

    Get PDF
    Switched reluctance motors (SRM) are a suitable and cheaper alternative for current electric vehicle (EV) powertrain topologies due to low weight, high torque/size ratio and simple construction, without permanent magnets and a minimum amount of copper. The main setback that these motors encounter is the high torque ripple, mainly due to the highly nonlinear torque generation mechanism. Torque ripple leads to mechanical vibrations that require unnecessary wear in the mechanical powertrain. In conventional torque sharing function (TSF) control, the torque produced by the machine cannot follow the expected torque for an extended speed range, mostly due to the imposed demagnetization of the outgoing phase at high speeds, resulting in poor performance and causing a high torque ripple. The main goal of this work is to design and validate a new SRM control method suitable for EV propulsion. The proposed controller applies a feedback loop that improves the weakness of the conventional methods, keeping a fast dynamic response. The simulation results show that torque ripple can effectively be reduced for a high torque and speed range. The researched algorithm is developed using Matlab/Simulink, basing the validation on experiments with a 60kW SRM, 12/8 poles prototype designed using finite element methods (FEM)

    Indirect angle estimation in switched reluctance motor drives using fuzzy logic based motor model

    Get PDF
    Copyright © 2000 IEEEIn this paper, a novel rotor position estimation scheme is described that was developed to overcome the drawbacks of the previous sensorless techniques, which were proposed for switched reluctance (SR) motor drives. It is based on fuzzy-logic, and does not require complex mathematical models or large look up tables. The scheme was implemented by using a digital signal processor. The real-time experimental results given in this paper show that the position estimation method proposed can provide accurate and continual position data over a wide range of speeds (zero/low/high), and can also function accurately at different operating conditions (chopping/single pulse mode and steady state/transient operation).Nesimi Ertugrul and Adrian D. Cheo

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    Artificial Intelligence Techniques of Estimating

    Get PDF

    Model predictive current control of switched reluctance motor with inductance auto-calibration

    Get PDF
    The thesis is composed of three papers, which investigate the application of Model Predictive Controller (MPC) for current control of Switched Reluctance Motor (SRM). Since the conventional hysteresis current control method is not suitable for high power SRM drive system with low inductance and limited switching frequency, MPC is a promising alternative approach for this application. The proposed MPC can cope with the measurement noise as well as uncertainties within the machine inductance profile. In the first paper, a MPC current control method for Double-Stator Switched Reluctance Motor (DSSRM) drives is presented. A direct adaptive estimator is incorporated to follow the inductance variations in a DSSRM. In the second paper, the Linear Quadratic (LQ) form and dynamic programming recursion for MPC are analyzed, afterwards the unconstrained MPC solution for stochastic SRM model is derived. The Kalman filter is employed to reduce the variance of measurement noises. Based on Recursive Linear-Square (RLS) estimation, the inductance profile is calibrated dynamically. In the third paper, a simplified recursive MPC current control algorithm for SRM is applied for embedded implementation. A novel auto-calibration method for inductance surface estimation is developed to improve current control performance of SRM drive in statistic terms. --Abstract, page iv

    Impact of cross-saturation in sensorless control of transverse-laminated synchronous reluctance motors

    Get PDF
    Synchronous reluctance (SyR) motors are well suited to a zero-speed sensorless control, because of their inherently salient behavior. However, the cross-saturation effect can lead to large errors on the position estimate, which is based on the differential anisotropy. These errors are quantified in the paper, as a function of the working point. The so-calculated errors are then found in good accordance with the purposely obtained experimental measurements. The impact of the amplitude of the carrier voltage is then pointed out, leading to a mixed (carrier injection plus electromotive force estimation) control scheme. Last, a scheme of this type is used, with a commercial transverse-laminated SyR motor. The robustness against cross-saturation is shown, in practice, and the obtained drive performance is pointed out proving to be effective for a general-purpose applicatio
    corecore