17 research outputs found

    DGNSS Cooperative Positioning in Mobile Smart Devices: A Proof of Concept

    Get PDF
    Global Navigation Satellite System (GNSS) constitutes the foremost provider for geo-localization in a growing number of consumer-grade applications and services supporting urban mobility. Therefore, low-cost and ultra-low-cost, embedded GNSS receivers have become ubiquitous in mobile devices such as smartphones and consumer electronics to a large extent. However, limited sky visibility and multipath scattering induced in urban areas hinder positioning and navigation capabilities, thus threatening the quality of position estimates. This work leverages the availability of raw GNSS measurements in ultralow-cost smartphone chipsets and the ubiquitous connectivity provided by modern, low-latency network infrastructures to enable a Cooperative Positioning (CP) framework. A Proof Of Concept is presented that aims at demonstrating the feasibility of a GNSS-only CP among networked smartphones embedding ultra-low-cost GNSS receivers. The test campaign presented in this study assessed the feasibility of a client-server approach over 4G/LTE network connectivity. Results demonstrated an overall service availability above 80%, and an average accuracy improvement over the 40% w.r.t. to the GNSS standalone solution

    Adaptive Bayesian State Estimation Integrating Non-stationary DGNSS Inter-Agent Distances

    Get PDF
    Bayesian navigation filters are broadly exploited in precise state estimation for kinematic applications such as vehicular positioning and navigation. Among these, Particle Filter (PF) has been shown as a valuable solution to support hybrid positioning algorithms such as sensor fusion to Global Navigation Satellite System (GNSS) and Cooperative Positioning (CP). Despite of an increased computational complexity w.r.t. conventional Kalman Filters (KFs), an effective weighting of the input measurements generally provides an improved accuracy of the output estimate. In the framework of the Differential GNSS (DGNSS) CP, this work presents an algorithm for the automated selection of the most appropriate error models for the tight-integration of non-stationary Differential GNSS (DGNSS) collaborative inter-agent distances. A model switching technique named Automated Adaptive Likelihood Switch (AALS) is proposed for a Cognitive Particle Filter (C-PF) architecture, based on the real-time approximation of the statistics of the inter-agent distances errors. The results achieved through realistic simulations demonstrated the effectiveness of the proposed solution in terms of error model selection. Therefore, an improvement of the position estimation accuracy was observed, since the cases in which DGNSS-CP would degrade performance due to possible mismodelling of the selected likelihood function are avoided

    Use Of Smartphones for Ensuring Vulnerable Road User Safety through Path Prediction and Early Warning: An In-Depth Review of Capabilities, Limitations and Their Applications in Cooperative Intelligent Transport Systems

    Get PDF
    The field of cooperative intelligent transport systems and more specifically pedestrians to vehicles could be characterized as quite challenging, since there is a broad research area to be studied, with direct positive results to society. Pedestrians to vehicles is a type of cooperative intelligent transport system, within the group of early warning collision/safety system. In this article, we examine the research and applications carried out so far within the field of pedestrians to vehicles cooperative transport systems by leveraging the information coming from vulnerable road users’ smartphones. Moreover, an extensive literature review has been carried out in the fields of vulnerable road users outdoor localisation via smartphones and vulnerable road users next step/movement prediction, which are closely related to pedestrian to vehicle applications and research. We identify gaps that exist in these fields that could be improved/extended/enhanced or newly developed, while we address future research objectives and methodologies that could support the improvement/development of those identified gaps

    Practical Simplified Indoor Multiwall Path-Loss Model

    Full text link
    Over the past few decades, attempts had been made to build a suitable channel prediction model to optimize radio transmission systems. It is particularly essential to predict the path loss due to the blockage of the signal, in indoor radio system applications. This paper proposed a multiwall path-loss propagation model for an indoor environment, operating at a transmission frequency of 2.45 GHz in the industrial, scientific, and medical (ISM) radio band. The effects of the number of the walls to be traversed along the radio propagation path are considered in the model. To propose the model, the previous works on well-known indoor path loss models are discussed. Then, the path loss produced by the intervening walls in the propagation path is measured, and the terms representing the loss factors in the theoretical pathloss model are modified. The analyzed results of the path loss factors acquired at 2.45 GHz are presented. The proposed path-loss model simplifies the loss factor term with an admissible assumption of the indoor environment and predicts the path-loss factor accurately.Comment: Submitted to ICCAS 202

    A Preliminary Study of Machine-Learning-Based Ranging with LTE Channel Impulse Response in Multipath Environment

    Full text link
    Alternative navigation technology to global navigation satellite systems (GNSSs) is required for unmanned ground vehicles (UGVs) in multipath environments (such as urban areas). In urban areas, long-term evolution (LTE) signals can be received ubiquitously at high power without any additional infrastructure. We present a machine learning approach to estimate the range between the LTE base station and UGV based on the LTE channel impulse response (CIR). The CIR, which includes information of signal attenuation from the channel, was extracted from the LTE physical layer using a software-defined radio (SDR). We designed a convolutional neural network (CNN) that estimates ranges with the CIR as input. The proposed method demonstrated better ranging performance than a received signal strength indicator (RSSI)-based method during our field test.Comment: Submitted to IEEE/IEIE ICCE-Asia 202

    Neural Network-Based Ranging with LTE Channel Impulse Response for Localization in Indoor Environments

    Full text link
    A neural network (NN)-based approach for indoor localization via cellular long-term evolution (LTE) signals is proposed. The approach estimates, from the channel impulse response (CIR), the range between an LTE eNodeB and a receiver. A software-defined radio (SDR) extracts the CIR, which is fed to a long short-term memory model (LSTM) recurrent neural network (RNN) to estimate the range. Experimental results are presented comparing the proposed approach against a baseline RNN without LSTM. The results show a receiver navigating for 100 m in an indoor environment, while receiving signals from one LTE eNodeB. The ranging root-mean squared error (RMSE) and ranging maximum error along the receiver's trajectory were reduced from 13.11 m and 55.68 m, respectively, in the baseline RNN to 9.02 m and 27.40 m, respectively, with the proposed RNN-LSTM.Comment: Submitted to ICCAS 202

    Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones

    Get PDF
    Global Navigation Satellite System (GNSS) positioning is currently a common practice thanks to the development of mobile devices such as smartphones and tablets. The possibility to obtain raw GNSS measurements, such as pseudoranges and carrier-phase, from these instruments has opened new windows towards precise positioning using smart devices. This work aims to demonstrate the positioning performances in the case of a typical single-base Real-Time Kinematic (RTK) positioning while considering two different kinds of multi-frequency and multi-constellation master stations: a typical geodetic receiver and a smartphone device. The results have shown impressive performances in terms of precision in both cases: with a geodetic receiver as the master station, the reachable precisions are several mm for all 3D components while if a smartphone is used as the master station, the best results can be obtained considering the GPS+Galileo constellations, with a precision of about 2 cm both for 2D and Up components in the case of L1+L5 frequencies, or 3 cm for 2D components and 2 cm for the Up, in the case of an L1 frequency. Moreover, it has been demonstrated that it is not feasible to reach the phase ambiguities fixing: despite this, the precisions are still good and also the obtained 3D accuracies of positioning solutions are less than 1 m. So, it is possible to affirm that these results are very promising in the direction of cooperative positioning using smartphone devices

    Benefits from a multi-receiver architecture for GNSS precise positioning

    Get PDF
    Precise positioning with a stand-alone GPS receiver or using differential corrections is known to be strongly degraded in an urban or sub-urban environment due to frequent signal masking, strong multipath effect, frequent cycle slips on carrier phase, etc. The objective of this Ph.D. thesis is to explore the possibility of achieving precise positioning with a low-cost architecture using multiple installed low-cost single-frequency receivers with known geometry whose one of them is RTK positioned w.r.t an external reference receiver. This setup is thought to enable vehicle attitude determination and RTK performance amelioration. In this thesis, we firstly proposed a method that includes an array of receivers with known geometry to enhance the performance of the RTK in different environments. Taking advantage of the attitude information and the known geometry of the installed array of receivers, the improvement of some internal steps of RTK w.r.t an external reference receiver can be achieved. The navigation module to be implemented in this work is an Extended Kalman Filter (EKF). The performance of a proposed two-receiver navigation architecture is then studied to quantify the improvements brought by the measurement redundancy. This concept is firstly tested on a simulator in order to validate the proposed algorithm and to give a reference result of our multi-receiver system’s performance. The pseudorange measurements and carrier phase measurements mathematical models are implemented in a realistic simulator. Different scenarios are conducted, including varying the distance between the 2 antennas of the receiver array, the satellite constellation geometry, and the amplitude of the noise measurement, in order to determine the influence of the use of an array of receivers. The simulation results show that our multi-receiver RTK system w.r.t an external reference receiver is more robust to noise and degraded satellite geometry, in terms of ambiguity fixing rate, and gets a better position accuracy under the same conditions when compared with the single receiver system. Additionally, our method achieves a relatively accurate estimation of the attitude of the vehicle which provides additional information beyond the positioning. In order to optimize our processing, the correlation of the measurement errors affecting observations taken by our array of receivers has been determined. Then, the performance of our real-time single frequency cycle-slip detection and repair algorithm has been assessed. These two investigations yielded important information so as to tune our Kalman Filter. The results obtained from the simulation made us eager to use actual data to verify and improve our multi-receiver RTK and attitude system. Tests based on real data collected around Toulouse, France, are used to test the performance of the whole methodology, where different scenarios are conducted, including varying the distance between the 2 antennas of the receiver array as well as the environmental conditions (open sky, suburban, and constrained urban environments). The thesis also tried to take advantage of a dual GNSS constellation, GPS and Galileo, to further strengthen the position solution and the reliable use of carrier phase measurements. The results show that our multi-receiver RTK system is more robust to degraded GNSS environments. Our experiments correlate favorably with our previous simulation results and further support the idea of using an array of receivers with known geometry to improve the RTK performance

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc
    corecore