30 research outputs found

    On the dimension of posets with cover graphs of treewidth 22

    Get PDF
    In 1977, Trotter and Moore proved that a poset has dimension at most 33 whenever its cover graph is a forest, or equivalently, has treewidth at most 11. On the other hand, a well-known construction of Kelly shows that there are posets of arbitrarily large dimension whose cover graphs have treewidth 33. In this paper we focus on the boundary case of treewidth 22. It was recently shown that the dimension is bounded if the cover graph is outerplanar (Felsner, Trotter, and Wiechert) or if it has pathwidth 22 (Bir\'o, Keller, and Young). This can be interpreted as evidence that the dimension should be bounded more generally when the cover graph has treewidth 22. We show that it is indeed the case: Every such poset has dimension at most 12761276.Comment: v4: minor changes made following helpful comments by the referee

    Dimension and cut vertices: an application of Ramsey theory

    Full text link
    Motivated by quite recent research involving the relationship between the dimension of a poset and graph-theoretic properties of its cover graph, we show that for every d≥1d\geq 1, if PP is a poset and the dimension of a subposet BB of PP is at most dd whenever the cover graph of BB is a block of the cover graph of PP, then the dimension of PP is at most d+2d+2. We also construct examples which show that this inequality is best possible. We consider the proof of the upper bound to be fairly elegant and relatively compact. However, we know of no simple proof for the lower bound, and our argument requires a powerful tool known as the Product Ramsey Theorem. As a consequence, our constructions involve posets of enormous size.Comment: Final published version with updated reference

    Tree-width and dimension

    Full text link
    Over the last 30 years, researchers have investigated connections between dimension for posets and planarity for graphs. Here we extend this line of research to the structural graph theory parameter tree-width by proving that the dimension of a finite poset is bounded in terms of its height and the tree-width of its cover graph.Comment: Updates on solutions of problems and on bibliograph

    Minors and dimension

    Full text link
    It has been known for 30 years that posets with bounded height and with cover graphs of bounded maximum degree have bounded dimension. Recently, Streib and Trotter proved that dimension is bounded for posets with bounded height and planar cover graphs, and Joret et al. proved that dimension is bounded for posets with bounded height and with cover graphs of bounded tree-width. In this paper, it is proved that posets of bounded height whose cover graphs exclude a fixed topological minor have bounded dimension. This generalizes all the aforementioned results and verifies a conjecture of Joret et al. The proof relies on the Robertson-Seymour and Grohe-Marx graph structure theorems.Comment: Updated reference

    Nowhere Dense Graph Classes and Dimension

    Full text link
    Nowhere dense graph classes provide one of the least restrictive notions of sparsity for graphs. Several equivalent characterizations of nowhere dense classes have been obtained over the years, using a wide range of combinatorial objects. In this paper we establish a new characterization of nowhere dense classes, in terms of poset dimension: A monotone graph class is nowhere dense if and only if for every h≥1h \geq 1 and every ϵ>0\epsilon > 0, posets of height at most hh with nn elements and whose cover graphs are in the class have dimension O(nϵ)\mathcal{O}(n^{\epsilon}).Comment: v4: Minor changes suggested by a refere

    Cliquewidth and dimension

    Full text link
    We prove that every poset with bounded cliquewidth and with sufficiently large dimension contains the standard example of dimension kk as a subposet. This applies in particular to posets whose cover graphs have bounded treewidth, as the cliquewidth of a poset is bounded in terms of the treewidth of the cover graph. For the latter posets, we prove a stronger statement: every such poset with sufficiently large dimension contains the Kelly example of dimension kk as a subposet. Using this result, we obtain a full characterization of the minor-closed graph classes C\mathcal{C} such that posets with cover graphs in C\mathcal{C} have bounded dimension: they are exactly the classes excluding the cover graph of some Kelly example. Finally, we consider a variant of poset dimension called Boolean dimension, and we prove that posets with bounded cliquewidth have bounded Boolean dimension. The proofs rely on Colcombet's deterministic version of Simon's factorization theorem, which is a fundamental tool in formal language and automata theory, and which we believe deserves a wider recognition in structural and algorithmic graph theory

    Stable Matchings with Restricted Preferences: Structure and Complexity

    Get PDF
    In the stable marriage (SM) problem, there are two sets of agents–traditionally referred to as men and women–and each agent has a preference list that ranks (a subset of) agents of the opposite sex. The goal is to find a matching between men and women that is stable in the sense that no man-woman pair mutually prefer each other to their assigned partners. In a seminal work, Gale and Shapley showed that stable matchings always exist, and described an efficient algorithm for finding one. Irving and Leather defined the rotation poset of an SM instance and showed that it determines the structure of the set of stable matchings of the instance. They further showed that every finite poset can be realized as the rotation poset of some SM instance. Consequently, many problems–such as counting stable matchings and finding certain “fair” stable matchings–are computationally intractable (NP-hard) in general. In this paper, we consider SM instances in which certain restrictions are placed on the preference lists. We show that three natural preference models?k-bounded, k-attribute, and (k1, k2)-list–can realize arbitrary rotation posets for constant values of k. Hence even in these highly restricted preference models, many stable matching problems remain intractable. In contrast, we show that for any fixed constant k, the rotation posets of k-range instances are highly restricted. As a consequence, we show that exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings are fixed-parameter tractable when parameterized by the range of the instance. Thus, these problems can be solved in polynomial time on instances of the k-range model for any fixed constant k

    Stable Matchings with Restricted Preferences: Structure and Complexity

    Get PDF
    It is well known that every stable matching instance II has a rotation poset R(I)R(I) that can be computed efficiently and the downsets of R(I)R(I) are in one-to-one correspondence with the stable matchings of II. Furthermore, for every poset PP, an instance I(P)I(P) can be constructed efficiently so that the rotation poset of I(P)I(P) is isomorphic to PP. In this case, we say that I(P)I(P) realizes PP. Many researchers exploit the rotation poset of an instance to develop fast algorithms or to establish the hardness of stable matching problems. In order to gain a parameterized understanding of the complexity of sampling stable matchings, Bhatnagar et al. [SODA 2008] introduced stable matching instances whose preference lists are restricted but nevertheless model situations that arise in practice. In this paper, we study four such parameterized restrictions; our goal is to characterize the rotation posets that arise from these models: kk-bounded, kk-attribute, (k1,k2)(k_1, k_2)-list, kk-range. We prove that there is a constant kk so that every rotation poset is realized by some instance in the first three models for some fixed constant kk. We describe efficient algorithms for constructing such instances given the Hasse diagram of a poset. As a consequence, the fundamental problem of counting stable matchings remains #\#BIS-complete even for these restricted instances. For kk-range preferences, we show that a poset PP is realizable if and only if the Hasse diagram of PP has pathwidth bounded by functions of kk. Using this characterization, we show that the following problems are fixed parameter tractable when parametrized by the range of the instance: exactly counting and uniformly sampling stable matchings, finding median, sex-equal, and balanced stable matchings.Comment: Various updates and improvements in response to reviewer comment
    corecore