69 research outputs found

    Boxicity of graphs on surfaces

    Get PDF
    The boxicity of a graph G=(V,E)G=(V,E) is the least integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1...EkE=E_1 \cap ... \cap E_k. Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two and Thomassen proved in 1986 that planar graphs have boxicity at most three. In this note we prove that the boxicity of toroidal graphs is at most 7, and that the boxicity of graphs embeddable in a surface Σ\Sigma of genus gg is at most 5g+35g+3. This result yields improved bounds on the dimension of the adjacency poset of graphs on surfaces.Comment: 9 pages, 2 figure

    Local Boxicity, Local Dimension, and Maximum Degree

    Full text link
    In this paper, we focus on two recently introduced parameters in the literature, namely `local boxicity' (a parameter on graphs) and `local dimension' (a parameter on partially ordered sets). We give an `almost linear' upper bound for both the parameters in terms of the maximum degree of a graph (for local dimension we consider the comparability graph of a poset). Further, we give an O(nΔ2)O(n\Delta^2) time deterministic algorithm to compute a local box representation of dimension at most 3Δ3\Delta for a claw-free graph, where nn and Δ\Delta denote the number of vertices and the maximum degree, respectively, of the graph under consideration. We also prove two other upper bounds for the local boxicity of a graph, one in terms of the number of vertices and the other in terms of the number of edges. Finally, we show that the local boxicity of a graph is upper bounded by its `product dimension'.Comment: 11 page

    Boxicity and Cubicity of Product Graphs

    Full text link
    The 'boxicity' ('cubicity') of a graph G is the minimum natural number k such that G can be represented as an intersection graph of axis-parallel rectangular boxes (axis-parallel unit cubes) in RkR^k. In this article, we give estimates on the boxicity and the cubicity of Cartesian, strong and direct products of graphs in terms of invariants of the component graphs. In particular, we study the growth, as a function of dd, of the boxicity and the cubicity of the dd-th power of a graph with respect to the three products. Among others, we show a surprising result that the boxicity and the cubicity of the dd-th Cartesian power of any given finite graph is in O(logd/loglogd)O(\log d / \log\log d) and θ(d/logd)\theta(d / \log d), respectively. On the other hand, we show that there cannot exist any sublinear bound on the growth of the boxicity of powers of a general graph with respect to strong and direct products.Comment: 14 page

    Boxicity and topological invariants

    Full text link
    The boxicity of a graph G=(V,E)G=(V,E) is the smallest integer kk for which there exist kk interval graphs Gi=(V,Ei)G_i=(V,E_i), 1ik1 \le i \le k, such that E=E1EkE=E_1 \cap \cdots \cap E_k. In the first part of this note, we prove that every graph on mm edges has boxicity O(mlogm)O(\sqrt{m \log m}), which is asymptotically best possible. We use this result to study the connection between the boxicity of graphs and their Colin de Verdi\`ere invariant, which share many similarities. Known results concerning the two parameters suggest that for any graph GG, the boxicity of GG is at most the Colin de Verdi\`ere invariant of GG, denoted by μ(G)\mu(G). We observe that every graph GG has boxicity O(μ(G)4(logμ(G))2)O(\mu(G)^4(\log \mu(G))^2), while there are graphs GG with boxicity Ω(μ(G)logμ(G))\Omega(\mu(G)\sqrt{\log \mu(G)}). In the second part of this note, we focus on graphs embeddable on a surface of Euler genus gg. We prove that these graphs have boxicity O(glogg)O(\sqrt{g}\log g), while some of these graphs have boxicity Ω(glogg)\Omega(\sqrt{g \log g}). This improves the previously best known upper and lower bounds. These results directly imply a nearly optimal bound on the dimension of the adjacency poset of graphs on surfaces.Comment: 6 page

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675
    corecore